

CLIENTS PEOPLE PERFORMANCE

Melbourne Water Corporation

Report for Kelletts Road Wetland Detailed Design

June 2009

INFRASTRUCTURE | MINING & INDUSTRY | DEFENCE | PROPERTY & BUILDINGS | ENVIRONMENT

Contents

1.	Introduction		
2.	Obj	ectives and Design Criteria	3
	2.1	Objectives	3
	2.2	Design Criteria	3
3.	Bac	kground Investigations	5
	3.1	Survey	5
	3.2	Services	5
4.	Stal	keholder Involvement	6
	4.1	City of Knox	6
	4.2	Enterprise Estate	6
	4.3	Community Consultation	6
5.	Hyd	rologic and Hydraulic Modelling	7
	5.1	Hydraulic Assessment of the Low Flow Kelletts Road Drain	7
	5.2	Catchment Hydrology	7
	5.3	Hydraulic Assessment of Corhanwarrabul Creek	8
	5.4	Hydrologic Assessment of Corhanwarrabul Creek	9
	5.5	Hydraulic Assessment of Flow through the Wetland	12
6.	Wet	land Design	13
	6.1	Catchment Area	13
	6.2	Design Flows	13
	6.3	Wetland Arrangement	13
	6.4	Flow Control Structures	17
	6.5	Gross Pollutant Traps	19
	6.6	Terrain Modelling of Wetlands	21
	6.7	Other Design Features	21
7.	Stor	mwater Treatment Effectiveness	23
	7.1	MUSIC Model	23
	7.2	Stormwater Treatment Results	25

8.	Plar	27	
	8.1	Landscape Issues	27
	8.2	Existing Site Conditions	27
	8.3	Proposed Wetland Development	27
	8.4	Landscaped Areas Above Wetland Cells	28
	8.5	Tree Planting	28
	8.6	Rock Weirs	29
	8.7	Rocks Found on Site	29
	8.8	Maintenance	29
9.	Establishment, Maintenance and Lifecycle Issues		30
	9.1	Water Level Control and Maintenance	30
	9.2	Ongoing Maintenance	31
10.	Cost Estimates		
11.	Conclusion		

Table Index

Table 1	Best Practice Stormwater Treatment Objectives	4
Table 2	Estimated Peak Flow Rates for the Kelletts Road	
	Main Drain	8
Table 3	Sediment Storage Properties	15
Table 4	Waterbody Depths	16
Table 5	Earthwork Volumes	21
Table 6	Source Node Parameters	24
Table 7	Gross Pollutant Trap Parameters	24
Table 8	Wetland Parameters	25
Table 9	Treatment Train Results	25
Table 10	Maintenance Requirements	31
Table 11	Kelletts Road Wetland: Civil Cost Estimates	34

Figure Index

Figure 1	Site Location	2
Figure 2	Stage/Flow Relationship for Corhanwarrabul Creek at the Wetland Outlet	8
Figure 3	Corhanwarrabul Creek 2 hourly Flow Data 1998- 2001	10

Figure 4	Corhanwarrabul Creek Flow Data between July and December 2000	11
Figure 5	Flow Exceedance Curve for Corhanwarrabul Creek between July 1998 to September 2001	12
Figure 6	Wetland Schematic	14
Figure 7	Wetland Water Level Fluctuations	17
Figure 8	MUSIC Model Configuration	23

Appendices

A Preliminary Environmental Investigation

1. Introduction

In July 2005, Melbourne Water Corporation (MWC) commissioned GHD Pty Ltd (GHD) to undertake the Design for a wetland for the Kelletts Road Drain that currently discharges into Corhanwarrabul Creek untreated.

This proposed stormwater treatment system consists of a 4 ha size wetland with sediment pond and a Gross Pollutant Trap (GPT) and diversion structure from the low flow pipe. The proposed treatment system is located between Stud Road and Corhanwarrabul Creek and within the proposed Knox City Council Stamford Park development. The location of the wetland is illustrated in Figure 1.

Figure 1 Site Location

MELWAY REFERENCE MAP 72 K 10 NOT TO SCALE

2. Objectives and Design Criteria

2.1 Objectives

The project objectives as set out in the Assignment Specification include the following:

- To improve water quality of flows from Kelletts Road Outfall Drain, which discharges into Corhanwarrabul Creek by providing water quality treatment wetlands at the outfall to the drain;
- To assess the feasibility of achieving stormwater treatment objectives in accordance with State Environment Protection Policy (SEPP) and Best Practice Management Environmental Guidelines (BPEMG 1999);
- To design a treatment facility within the identified site that satisfies the requirements of MWC and Knox City Council; and
- To prepare detail design documentation so that tender documentation and construction contracts can be prepared.

2.2 Design Criteria

The following design criteria has been established for the proposed wetland:

- Stormwater treatment in accordance with Environment Protection Authority (EPA) Best Practice Requirements;
- Provision of a sustainable wetland for environmental, aesthetic and flow control purposes; and
- Ease of management and maintenance of the stormwater treatment system and the sustainability and cost effectiveness of the ongoing management of the system.

The stormwater treatment targets can be considered in two categories as follows.

2.2.1 Best Practice Performance Objectives

The Best Practice Performance Objectives are the main criteria that are used in the Best Practice Environmental Management Guidelines (BPEMG 1999) published by the CSIRO for the design of stormwater treatment systems. The objectives relate to target reductions in annual pollutant loads compared with typical urban pollutant loads. The treatment objectives are listed in Table 1 below.

Pollutant	Best Practice Objective
Total Suspended Solids (TSS)	80 % retention of the typical urban load
Total Phosphorus (TP)	45 % retention of the typical urban load
Total Nitrogen (TN)	45 % retention of the typical urban load
Litter	70 % retention of the typical urban load
Flows	Maintain discharges for the 1.5 year ARI at pre-development levels

Table 1 Best Practice Stormwater Treatment Objectives

2.2.2 Receiving Waters Objectives

The State Environment Protection Policies (Waters of Victoria) (SEPP) specify objectives for receiving waters in the State of Victoria. These objectives are also referred to in the Urban Stormwater BPEMG. The receiving waters objectives refer to all of catchment objectives for water quality in receiving waters based on the beneficial uses of the receiving waters, rather than setting specific objectives for every part of a catchment. On this point the EPA's Draft Policy and Policy Impact Statement on SEPP states 'It is important to remember that the environmental objectives specify desired levels within the surrounding water, not levels in runoff from land or discharge from drains and pipes'. The SEPP pollutant levels are therefore not intended to be applied directly to runoff from urban areas.

The Stormwater Agreement between the EPA, Municipal Association of Victoria (MAV) and Melbourne Water allows for urban areas to be 'deemed to comply' with SEPP if Best Practice Stormwater Management is used.

We have therefore used the Best Practice Objectives listed above as the benchmark for the design of the stormwater treatment system.

3. Background Investigations

The key findings relevant for this site from the various investigations are summarised below:

 Cultural Heritage – The investigation for the area was limited to the creek corridor and in this area no sites were identified. However the excavation works performed for the adjacent Enterprise Estate did discover potential heritage items;

It is understood that MWC and the Waterways Alliance will proceed with Cultural Heritage investigation as per MWC's policy; and

Geotechnical and Environmental Assessment – GHD undertook environmental sampling at eight locations within the site in July 2003. Soil analysis showed that all tested chemical parameters were below the relevant EPA "Fill material" criteria. However one sample was classified as acid sulphate soil. If the site is subject to a Statutory Environmental Audit, a site history assessment and additional sampling and analysis will be required.

A second environmental investigation was completed in April 2009. The investigation indicated that contaminant concentrations were within the adopted guidelines and no potential acid sulfate soils were identified at the site. The soil generated during constructions may be removed from the site as fill material in accordance with EPA Publication 448.3. However, due to the sampling density and soil pH ranging from 5.0 to 6.3 pre-approval from a receiving landfill is recommended before any soil is removed from the site.

A complete summary of the environmental investigation can be found in Appendix A.

3.1 Survey

MWC provided GHD with the following survey information for the project:

- Aerial Laser Survey (ALS) information for the site with 20-meter grid resolution (Received 31 May 2005); and
- A Feature Survey and Cross-Section Survey of Corhanwarrabul Creek at approximate 100 metre spacing by Connell Wagner (Aurecon). Intermediate structures and alignment changes were also included in the survey (Received 4 August 2005).

To determine the Kelletts Road Main Drain pipe levels and alignment, GHD commissioned Geomatic Services to survey the alignment and invert profile of the main pipe drain, and the wetland footprint.

3.2 Services

Efforts have been made to locate existing services in the vicinity of the proposed facility through the MOCS. There does not appear to be any services located within the site aside from the Kelletts Road stormwater drain.

4. Stakeholder Involvement

4.1 City of Knox

GHD has worked with the City of Knox in preparing the design of the wetland. These include meetings with Peter Kavan and the design plan reviewed by Council.

The initial concept for the wetland was developed to be incorporated into Council's masterplan for Stanford Park. Due to the alteration of the masterplan, Council requested MWC and GHD to revise the design of the wetland to match the proposed changes to the revised masterplan.

A result of Council's involvement the concept design was revised to reflect the change in the masterplan, which is included in the final footprint.

A meeting was held with City of Knox, MWC and the Waterway Alliance on 18 November 2008 to agree on the final design and provide approval to move the project from functional design into detailed design. As part of this meeting, City of Knox nominated that spoil from the site can be deposed of to the south of the proposed Stanford park area and be used for the fill platform for a future residential estate.

4.2 Enterprise Estate

During the investigation period, the adjacent land has been developed. A meeting with MWC, Knox Council and the developer's representatives (Brown Consulting and St Hillers) was held on 9 September 2008 and 9 December 2008 to discuss the interface of the wetland and the development. An outcome of this meeting was that the wetland is to accommodate the equivalent ARI capacity from the Enterprise Development to that provided for the Kelletts Road catchment, for water quality treatment. Flows that exceed the three-month ARI event should be directed away from the wetland or have sufficient detention provided to minimise potential flooding caused by a restricted outlet.

4.3 Community Consultation

Community consultation has been undertaken by MWC's Michael Brown for the overall development project.

5. Hydrologic and Hydraulic Modelling

Hydrologic and hydraulic modelling was undertaken to provide a design basis of the wetland and identify potential design constrains. The investigation consisted of the following assessments:

- Estimate the inflow to the wetland from the Kelletts Road Main Drain;
- Identify the downstream stage/flow conditions at the outlet of the wetland into Corhanwarrabul Creek through 1D hydraulic modelling;
- Review of daily stage data of Corhanwarrabul Creek to provide an indication of the typical flows within the creek; and
- Assess the design velocities through the wetland.

A summary of the assessments is included below.

5.1 Hydraulic Assessment of the Low Flow Kelletts Road Drain

The design flow into the wetland has been defined by the capacity of the existing low flow 1050 mm pipe. Information provided by detailed survey of the alignment and inverts indicates the grade of the Kelletts Road pipe to vary between 1 in 500 (0.2%) and 1 in 790 (0.13%).

A hydraulic model of the pipe was developed to estimate the full flow capacity for the low flow pipe along the entire length between Kelletts Road and the proposed wetland diversion. Based on this assessment, the estimated capacity of this low flow pipe is 1.4 m^3 /s where any flows above this value caused surcharging into the main floodway channel.

This flow has been used as the design treatment flow for the Kelletts Road wetland.

5.2 Catchment Hydrology

Based on the catchment size, impervious fraction and estimated time of concentration an estimate of the 1, 10 and 100-year ARI flow rates as made with the rational method¹ and is summarised in Table 2.

¹It is noted that the rational method should only be used for large catchments (>25 km) but is used in this investigation as a guide to obtain the equivalent treatment capacity of the wetland.

ARI	Area	% Imp.	Tc (min)	Intensity (mm/hr)	C ₁₀	Cy	Peak Flow (m³/s)
1	289.6	55%	32	19.72	0.55	0.44	7.0
10	289.6	55%	32	40.14	0.55	0.55	17.9
100	289.6	55%	32	67.39	0.55	0.66	36.0

Table 2 Estimated Peak Flow Rates for the Kelletts Road Main Drain

Based on the above data, the low flow pipe can only convey approximately 20% of the one-year flow and approximately represents the equivalent of between a one to three month ARI event for the catchment.

5.3 Hydraulic Assessment of Corhanwarrabul Creek

The 1D HEC-RAS (ver 3.1.3) model developed for Corhanwarrabul Creek rehabilitation works the creek was analysed with different flow rates ranging from 0.1 m^3 /s to 10 m^3 /s. For a range of flows assessed the estimated stage level of the creek at the proposed wetland outlet location is presented in Figure 2.

Figure 2 Stage/Flow Relationship for Corhanwarrabul Creek at the Wetland Outlet

Based on these results, the standing water level of the creek is approximately 49.6 m AHD which is influenced by a grade control structure located downstream of the outlet and would represent the absolute minimum the wetland could drain down without pumping.

For a flow in Corhanwarrabul Creek of 1.3 m³/s, the tail water is approximately 50.10 m AHD.

To provide some hydraulic grade between the wetland and the creek and gain an indication of the frequency for the wetland to freely drain into the creek a hydrologic assessment was performed.

5.4 Hydrologic Assessment of Corhanwarrabul Creek

MWC provided GHD with the stage data for Corhanwarrabul Creek for the period July 1998 to September 2005. This stage data was converted to flow rates based on a rating curve for the station with the flow rate illustrated in Figure 3. Based on this flow data the Creek's flow rate fluctuates and after larger flows, the rates decrease down to a nominal flow. Based on this data, the wetland should be able to drain to the NWL typically within 24 to 48 hours after a large flow event. Within this period, the Months of August and September in 2000 indicate an extended flow period where the levels in the Creek may have an extended and potentially reduce capacity for the wetland to drain. On closer review of this period (Figure 4) the flows within the creek do recede back to the base flow levels within 24 hours of the peak which indicate that the wetland would be able to draw down to the NWL for the period assessed.

Further to this assessment, an exceedance curve for the creek is included in Figure 5. This indicates that approximately 95% the flow within the assessment period was below 1.3 m^3 /s. Therefore for 95% of the time it is expected that the wetland should be able to freely drawdown to the NWL after a rain event.

800 9 8.5 700 8 7.5 7 600 6.5 6 Flow Rate (ML/day) 500 Flow Rate (cum./s) 5.5 5 400 4.5 4 3.5 300 3 2.5 200 2 1.5 100 1 0.5 0 0

Figure 3 Corhanwarrabul Creek 2 hourly Flow Data 1998-2001

Figure 4 Corhanwarrabul Creek Flow Data between July and December 2000

Figure 5 Flow Exceedance Curve for Corhanwarrabul Creek between July 1998 to September 2001

5.5 Hydraulic Assessment of Flow through the Wetland

To assess the potential for wetland scour, a HEC-RAS (Ver 3.1.3) hydraulic model was created to model the design flow through the wetland. The tailwater level for this assessment was assumed to be the normal water level (RL 50.10 m AHD). This represents the initial inflow conditions that would develop the greatest hydraulic grade through the wetland and subsequently would be the "worst case" scenario.

The HEC-RAS hydraulic model indicates that the velocity through the wetland would be below 0.1 m/s for majority of the structure. The locations where the velocity is higher than 0.1 m/s are limited to the ephemeral zones where velocities reach 0.3 m/s but once the water level reaches the Operating Water Level (OWL) of RL 50.60 m, the velocities through the whole facility are less than 0.05 m/s, including the ephemeral/shallow marsh areas) for the design flow.

6. Wetland Design

6.1 Catchment Area

The upstream catchment for the proposed facility is approximately 290 ha consisting primarily of residential development and some industrial land use along Stud Road.

6.2 Design Flows

As detailed in Section 5.1, the estimated inflow from the Kelletts Road Main Drain would be approximately 1.4 m^3 /s. In additional to this flow, a second inlet pipe will convey flows from the adjacent industrial subdivision.

Based on the provided flows from Brown Consulting, an additional 375 mm inlet pipe has been included in the wetland with an estimated capacity of 0.3 m³/s, which corresponds to the 1 year ARI event.

Subsequently, the wetland has been designed to convey a peak flow of 1.7 m³/s into Corhanwarrabul Creek.

6.3 Wetland Arrangement

The proposed wetland systems will consist of a single wetland with an initial sediment pond or inlet zone followed by a banding of macrophyte marshes of varying depths and open water zones. The layout of this system is shown in Appendix D.

These water features are proposed to have the following general arrangements:

- Permanent water body with a multi level orifice outlet control structure set at the Normal Water Level (NWL) of 50.10 m AHD; and
- Operating Water Level (OWL), which will incorporate a treatment volume above the NWL that will temporarily store stormwater to allow it to be treated in the wetlands to a level of 50.60 m AHD.

A schematic of a wetland's operation is provided in Figure 6.

Note: Figure not to Scale

Design Water Levels

The water levels for the wetland have been designed to provide optimal operating conditions based on the hydraulic constraints of the upstream and downstream conditions as follows:

The incoming pipe has an invert of 50.3 m AHD, to minimise the potential hydraulic interaction of the wetland and the pipe under low flow conditions. It was identified that the NWL should be below the invert level of the pipe to allow the initial flows from the catchment to have a free outfall into the wetland. This would maximise the treatment volume prior to the upstream pipe system backwatering and bypassing.

Additionally, having the pipe above the NWL allows for simpler maintenance of the main drain pipe and the GPT. This would allow "dry inspections" as the pipe would not be submerged and not require dewatering; and

The downstream conditions of Corhanwarrabul Creek indicate that the minimum level the wetland can freely drain to is 49.60 m AHD as controlled by a grade control structure downstream of the outlet. However, if Corhanwarrabul Creek has a base flow, then levels in the creek would rise and potentially limit the outflow of the wetland. Subsequently, based on the assessment detailed in Section 5, it was deemed suitable to have a 95% expectation that the downstream tail water conditions would facilitate a free draining wetland. It is noted that 90% of the estimated flow rate of 0.7 m³/s and a corresponding stage of 49.9 m AHD, will provide the wetland with approximately 200 mm of grade between the wetland and the creek.

Based on the constraint of the inlet pipe invert (50.30 m AHD) and the downstream levels of Corhanwarrabul Creek (49.60 m AHD under no flow), the Wetland NWL was designed to be 50.10m AHD. Should there be operating problems within the wetland caused by hydraulic conditions, the variable orifice gate can alter the NWL between 49.90 m AHD and 50.20 m AHD.

6.3.1 Sediment Pond

The sediment or inlet zones to the wetland have been designed to dissipate energy into the wetland and to remove coarse to medium sediments. This would be achieved by reducing the inflow velocities to below 0.05 m/s, which would allow deposition of sediment material. Under ideal design flow conditions, the sediment pond would have a residence time of approximately 45 minutes and typically able to remove silt-sized sediments.

By providing this pre-treatment, sediment build-up within the wetland would be minimised and subsequently maintain the wetland treatment effectiveness.

Stage/Storage and Area of the Sediment pond is provided in Table 3.

Stage (m AHD)	Volume (m ³)	Area (m2)
48.6	0	0
48.7	162	1669
48.8	334	1773
48.9	517	1882
49.0	711	1995
49.1	916	2111
49.2	1133	2227
49.3	1361	2343
49.4	1601	2459
49.5	1853	2575
49.6	2116	2693
49.7	2392	2814
49.8	2681	2973
49.9	2987	3165
50.0	3315	3385

Table 3 Sediment Storage Properties

Based on the MUSIC modelling (Section 7.1), the estimated annual sediment volume captured in the structure would be approximately 150 m³. The minimum maintenance period required by MWC maintenance is five years, which would result in a total volume of 750 m³. Subsequently the estimated depth of sediment for removal is 500 mm depth from the invert or a longer maintenance interval adopted.

6.3.2 Macrophyte Marsh

The wetland consists of a number of macrophyte zones that include a number of marsh and ephemeral cells to aid in the biological removal of pollutants. The wetland has been designed with varying depths to promote the establishment of a variety of wetland species. The range of water body depths is presented in Table 4.

The edges of the proposed water bodies will have relatively flat slopes (1 vertical to 8 horizontal). This will provide an environment for an ephemeral wet edge that will be planted with macrophytes and other wetland plants to enhance the perimeter and provide a passive barrier from potential access.

6.3.3 Deep Open Water

The final component in the system will be a deep water zones with island features. These have been included to provide a:

- Water quality benefit to allow some minor UV treatment of stormwater and slow velocities to allow fine particle removal; and
- Habitat refuge within the wetland for wetland fauna to exist and minimise potential problems caused by feral animals. This deep-water zone and island area has been design to allow platypus to utilise the wetland and would also provide an area for platypus habitat within this reach of Corhanwarrabul Creek and the proposed Stamford Park.

	Normal Depth (m)	Treatment Depth (m)	Operating Depth (m)
Sediment Pond	1.5	0.5	2.0
Ephemeral	0	0.6	0.6
Shallow Marsh	0-0.2	0.6	0.6 - 0.8
Deep Marsh	0.2 - 0.4	0.6	0.8 – 1.0
Submerged Marsh	0.4 - 0.9	0.6	1.0 – 1.50
Open Water	1.6	0.6	2.2

Table 4Waterbody Depths

6.3.4 Wetland Sustainability

To assess the potential for the wetland to either dry out over the summer months or be permanently inundated during the winter months, a water balance was set up for the years 1990 to 1999. The level fluctuations of the wetland are detailed in Figure 7 showing a series of wetting and drying cycles that would replicate a natural wetland system.

Figure 7 Wetland Water Level Fluctuations

Figure 7 indicates seasonal water level variability within the wetland where:

- The summer months shows draw down below the NWL by between 100 and 200 mm which is considered acceptable; and
- The winter months indicates the NWL can be raised for extended periods of time. During these periods there is potential for the ephemeral planting to die. To mitigate these potential problems, the wetland should be consistently monitored and if the is noticeable problem with the ephemeral planting, the orifice plate should be lowered so the NWL is set to 49.90 m AHD (90% stage level in the Creek). Additionally, the circular orifice plugs can be removed from the outlet to reduce the retention time within the wetland. This flexibility with the control pit would allow an adaptive maintenance regime to implemented without retrofitting the wetland control pit.

6.4 Flow Control Structures

6.4.1 1050 mm Inflow Diversion

To divert the flows into the wetland, a diversion pit is proposed on the existing low flow pipe for the Kelletts Road Main Drain. This diversion pit would direct the pipe flow into the wetland.

To allow the wetland to be brought on and offline during the establishment and future maintenance the diversion pit be fitted with watergates. When the wetland is brought offline, flows would continue along the existing 1050 mm pipe into Corhanwarrabul Creek, bypassing the wetland but flows still being treated for pollutants by the GPT.

6.4.2 Wetland Outflow

Flow from the wetland will be controlled via the outlet pit, which consists of an adjustable plate with orifice holes and a raised pipe grill. The control structure has been designed to incorporate the following operational requirements of the wetland:

- An extended detention time of 50 hours for the operating water volume stored in the wetland. This would be achieved with a variable weir plate with the following orifice configuration:
 - Single 300 (w) x 150 (h) rectangular orifice set at the Normal Water Level of 50.10 m;
 - Single 150 (w) x 75 (h) rectangular orifice set at 50.30 m;
 - Single 150 (w) x 75 (h) rectangular orifice set at 50.425 m;
- Provide simplified maintenance requirements and easy access that has been adopted for adjacent wetland designs;
- Reduce the potential for the outlet to become blocked in high flow events through the use of:
 - An aluminium hood to prevent floatable debris blocking the orifice holes for the low flows; and
 - A concrete slot recessed below the pit grate to have large openings to prevent vegetation material and litter blocking the outlet.

The proposed configuration of the wetland high flow weir outlet has been designed to convey the inflow of 1.7 m^3 /s with an estimated head of 400 mm. This provides the design Top Water Level (TWL) of the wetland at 51.00 m.

This TWL assumes that there is a limited tailwater condition from Corhanwarrabul Creek. Should Corhanwarrabul Creek be flowing above the levels of the wetland, then the outflow from the wetland will be limited. Under these conditions, due to the high water level of the wetland, the flow into the wetland would be limited due to the hydraulics of the low flow 1050 mm pipe, which would cause additional surcharging into the main channel drain.

6.4.3 Flood Gate

As detailed previously, there is a definite potential for Corhanwarrabul Creek to have a higher water level than the wetland. Should this occur there is potential that the wetland is filled with water from the creek. To prevent backflows from the creek into the wetland a floodgate is to be placed on the on the outlet pipe. To minimise the potential for vandalism and damage from flood debris the flood valve will be located within a pit away from the creek.

6.5 Gross Pollutant Traps

To prevent gross pollutants entering the wetland and Corhanwarrabul Creek, two types of GPT options were assessed:

- MWC's preferred litter removal option of a Net solution. For this assessment it was assumed the location is to be at the culvert headwall on Stud Road; and
- Underground proprietary systems, similar to a CDS^{™2} or Cleansall[™] arrangement located near the wetland.

The configuration of both systems is detailed below.

6.5.1 Net Tech

The Net Tech solution would need to be located near Stud Road prior to flows being discharged into the low flow pipe to prevent litter entering the proposed wetland.

The number of nets is limited by the width of the existing headwall. This is due to the high flow culverts located to the north and the size of the easement to the south. The existing width of the headwall is 10 metres, which equates to 7 Net Tech Litter Nets.

Based on the estimated annual litter load for the catchment, a monthly maintenance frequency is likely to be required.

The capacity of each net has been estimate to contain approximately 1.10 cubic metres in volume based on the following parameters:

- Each net has dimensions of 0.6(H) x 1.2(W) x 2.0(L); and
- The nets will effectively bypass when they are 75% full.

The hydraulic capacity of the culverts under Stud Road will be reduced. It's estimated that the culverts at full flow (not pressurised) have a capacity of approximately 5 m³/s (~3 month flow). With the same flow capacity and litter nets full it's estimated that the headwater could be increased by 1.4 metres. This increase in flow depth is based on the following:

- 600 mm due to the height of the nets that are blocked;
- > 200 mm due to the thickness of the maintenance access pad;
- 550 mm weir flow over the litter nets; and
- Significant modification to the existing outlet structure to accommodate the nets

² For the purposes of this report, the identification of proprietary products does not indicate a preference for the unit but identifies the preferred performance specifications of the device.

The following alternative locations for the Net Tech solutions were considered and discounted:

- Positioning a net structure on the outlet of the pipe into the wetland but given the operating levels of the wetland and the low grade of the pipe, there is a possibility that the net would be submerged for extended periods creating maintenance and aesthetic problems, and when the bags become full between maintenance periods, there is the potential that flows would be forced to bypass the wetland resulting in a in an underperformance of the wetland; and
- Locating the nets downstream of the new Enterprise Road culvert crossing. However the invert of the low flow pipe at this location is 50.45 m AHD and the channel has an invert of 52.0 m AHD. This would require the channel to be lowered by 1.5 metres to match the pipe invert, which was not considered a practical solution.

6.5.2 Underground Proprietary Gross Pollutant Trap

A proposed underground GPT such as a CDS or Cleansall type unit could be located below ground adjacent to the wetland system within the existing MWC easement. The proposed maintenance access for the wetland will be from the Enterprise Road onto a suitable path, which connects to the access track to the wetland. This access would also be used to allow maintenance of the underground GPT system.

The maintenance frequency of the underground device can be altered to suit MWC long-term requirements. As a guide, for the largest Cleansall model 1350, the sump has a diameter of 3 metres and depth of ~3 metres and provides a total volume within the structure of 20 m³. This sized storage would result in a maintenance frequency of once every two to three months or 4 times per year. The CDS model P3030 has 11.2 m^3 of sump storage, which results in a monthly maintenance routine, however it can be configured with a larger sump to accommodate an extended maintenance period.

The limitation of the underground GPT is that the treatment flow rate is restricted to an estimated 1.5 m³/s, which corresponds to the pipe capacity. This results in an estimate effective reduction of gross pollutants into Corhanwarrabul Creek by 80%. With the Net Tech option, which has an estimated high flow bypass of 5 m³/s, the reduction of Gross Pollutants is increased to 90%, however this assumes that the nets are always available for litter capture during all events which is typically not the case (i.e. if the nets are full).

6.5.3 Preferred GPT option

MWC advised GHD that the underground GPT option would be the preferred option for this development.

6.6 Terrain Modelling of Wetlands

6.6.1 Existing Ground Survey

The information provided by MWC as detailed in Section 3.1 was developed into a Digital Terrain Model (DTM) for the existing surface.

6.6.2 Design DTM

The design surface was compared to the existing surface to estimate the level of earthworks required for the development. Based on this comparison, there will be a surplus of excavated material from the site, (Table 5). This volume of material does not make an allowance for:

- Preparation of the sub-grade;
- Placement of rock;
- Boxing quantities and topsoil stripping/placement as required as part of the detailed design; and
- Bulking factors required as part of the earthworks.

Table 5Earthwork Volumes

	Total Cut (m ³)	Total Fill (m ³)	Surplus (m ³)
TOTAL	113 100	130	112 970

6.7 Other Design Features

6.7.1 Platypus Connection to Corhanwarrabul Creek

By request of MWC, provision has been made for Platypus to access the wetland. Due to the floodgate, orifice plate and other obstructions in the wetland outlet it is not suitable as a platypus access route. As such, a separate connection between Corhanwarrabul Creek and the wetland has been designed in accordance with the 'Preliminary Guidelines for Design of Lakes and Other New Water Bodies' published by the Australian Platypus Conservancy.

Key design features of the platypus connections are:

- Endwalls sheltered by partially de-limbed large woody debris and located in areas of natural vegetation to help provide shelter from predators and more closely emulate a natural arrangement;
- A 375 mm diameter passage, which is a sufficient diameter to allow a platypus to turn around without become trapped;
- The downstream end of the passage has an invert level that results in the passage remaining between one-third and two-thirds full on 80% of occasions (based on the hydraulic data presented in Section 5.3). This should encourage platypus to use the connection;

- The upstream end of the passage has an invert level that results in a minimum of 50 mm of water whilst the wetland is at normal water level and gradually fills as the wetland approaches operating water level;
- "Breathing bays" area located at least every 30 metres, these allow platypus to breathe in situations where the pipe is fully inundated; and
- A 'platypus pit' incorporating a weir that allow platypus passage via rocked ramps, whilst preventing ingress of creek water into the wetland 99% of the time (based on the hydraulic data presented in Section 5.3).

Platypus friendly features that have been included in the wetland itself include:

- Large woody debris anchored at regular intervals around the banks of the wetland, these not only provide potential shelter for platypus, but help stabilise the banks;
- A large hollow log adjacent to where the platypus connection enters the wetland, this provides a point of shelter near to the entrance; and
- Areas of riparian vegetation will be planted along sections of the wetland verge to provide shelter from predators and provide a food source for the invertebrates on which the platypus feed.

6.7.2 Access Tracks from the Enterprise Estate

The access track from the Enterprise estate will be upgraded to a standard that allows access for wetland maintenance and GPT cleaning as well as being of a standard suitable for use as a bicycle path.

7. Stormwater Treatment Effectiveness

7.1 MUSIC Model

MUSIC (Ver 3.01) was used to estimate the pollutant load and performance of the proposed stormwater treatment system.

7.1.1 Climate Data

Climate data for the model was obtained from the Croydon data provided in MUSIC. Croydon was chosen as it was the closest station in the same rainfall band as detailed in the MWC MUSIC guidelines. The period assessed in the MUSIC model is for the period January 1990 to December 1990 with a 6-minute time step.

7.1.2 MODEL Configuration

This arrangement has been modelled in MUSIC using the treatment train sequence as shown in Figure 8.

Figure 8 MUSIC Model Configuration

7.1.3 Source Node Parameters

The source node areas for the model were estimated from individual catchments as identified from regional 2 metre contours as supplied by MWC for the project. Catchment areas and impervious fraction is summarised in Table 6.

Table 6Source Node Parameters

Area (ha)	Impervious
30.27	55%
46.51	55%
69.43	55%
77.38	55%
65.41	55%
8.0	90%
298	56%
	30.27 46.51 69.43 77.38 65.41 8.0

7.1.4 Treatment Node Parameters

The treatment train process utilises a GPT to collect litter, a sediment pond to capture larger sediment particles and a wetland to remove suspended solids and nutrients. The parameters used in the MUSIC model are summarised below.

Gross Pollutant Traps

MWC has advised that an underground litter trap is to be used as part of the control to capture gross pollutants in the wetland. These GPTs have been simulated in MUSIC with the parameters detailed in Table 7.

Table 7 Gross Pollutant Trap Parameters

Pollutant	Parameter
High Flow Bypass	1.75 m ³ /s
Gross Pollutants	100% retention
Suspended Solids	40% retention
Total Nitrogen	0% retention
Total Phosphorus	0% retention

Wetland Parameters

The wetland parameters for the MUSIC model are detailed in Table 8.

Values for Wetland
1.7 m ³ /s
3 300 m ³
39 900 m ²
0.50 m
23 800 m ³
255 mm (~50 hr detention period)

7.2 Stormwater Treatment Results

Based on the proposed configuration of the stormwater treatment process, the MUSIC model estimates that the wetland and GPT would not achieve the required pollutant reductions to meet the Best Practice Guidelines. The results for the Kelletts Road Wetland system are detailed in Table 9.

Table 9Treatment Train Results

Pollutant	Pollution Generation	Treated Polluted Load	Percentage Reduction	Best Management Reduction
Total Suspended Solids (kg/yr)	273 000	65 800	76%	80%
Total Phosphorus (kg/yr)	595	238	60%	45%
Total Nitrogen (kg/yr)	4 470	2 640	41%	45%
Gross Pollutants (kg/yr)	59 000	4 820	92%	70%

From the estimated performance of the stormwater treatment train, the wetland does not achieve the best management guidelines for Total Suspended Solids and Nitrogen removal. This is mainly due to the size of the wetland compared to the contributing catchment and the limited flow rate that is actually able to enter the wetland.

During the Concept Design Phase of the project, the wetland area was derived to achieve the required treatment level for nitrogen. These parameters that derived the wetland were based on typical configuration and an estimated flow rate. Due to the further detail available, the treatment is limited by the volume of stormwater able to enter the wetland and the configuration of the earthworks, which was not available at the concept design phase.

Based on this system, the addition of the proposed treatment train would improve the water quality within Corhanwarrabul Creek and ultimately Port Phillip Bay as shown bellow:

- The mass of suspended solids removed each year is 207 200 kg;
- A reduction in approximately 357 kg/year of phosphorus;
- A reduction of approximately 1 830 kg/yr of nitrogen; and
- A reduction of approximately 54 180 kg/yr of gross pollutants.

8. Planting and Landscape Design

8.1 Landscape Issues

The broad landscape issues have been identified as:

- Integration of the proposed works to reflect the local landscape character populated with plant species associated with grassy woodland and swamp scrub environmental vegetation classes;
- Planting of the wetland system to achieve the expected water quality outcomes;
- Enrichment of wildlife habitat values; and
- Provide an open space asset that offers the local community a place suitable for active and passive recreation.

8.2 Existing Site Conditions

The site currently consists mostly of mown exotic grasses with little native vegetation except for some scattered patches of native species growing within the drainage line.

Due to the urbanisation that surrounds the study area and the site containing mainly exotic vegetation the study area is considered to offer negligible value for native fauna except for common and adaptable native and non-native fauna that are typical of urban environments.

8.3 Proposed Wetland Development

All wetland areas will be completely planted with indigenous aquatic species except those areas designated sedimentation ponds and open water, which will have perimeter fringe planting only.

Wetland planting and species composition will vary according to the depth of standing water within the various depth zones, which comprise each cell.

Typically, the proposed planting could include:

Ephemeral Marsh (banks, levees, occasionally inundated areas)

Carex appressa Cyperus lucidus Eucalyptus ovata Melaleuca ericifolia Juncus gregiflorus Juncus pauciflorus Juncus procerus Persicaria decipiens Poa ensiformis Poa labillardieri

Shallow Marsh: water depth 0-200 mm, nominal

Carex appressa Isolepis inundata Juncus amabilis Juncus pallidus Lythrum hyssopifolia Triglochin striata

Deep Marsh: water depth 200-400 mm, nominal

Alisma plantago-aquatica Baumea rubiginosa Triglochin procera

Submerged Marsh: water depth 400-900 mm, nominal

Eleocharis sphacelata Schoenoplectus validus

All aquatic and semi-aquatic plants should be supplied in Viro cells or standard tubes, or as divisions. Eucalyptus and Melaleuca species should be supplied in standard tubes.

The whole of the area for aquatic and semi-aquatic planting should be topsoiled with a 150-200 m thick layer of local soil with high organic content, having a pH of 6.5 - 8.5.

Planting density for all aquatic and semi-aquatic species should be not less than 4 plants/m² in the case of deep marsh zones and 6 plants/m² for all other zones.

8.4 Landscaped Areas Above Wetland Cells

Beyond the wetland cells, all bare earth surfaces created by construction works shall be stabilised by topsoiling, planting and grassing to provide suitable groundcover. Ideally, normal pasture or parkland grasses should be separated from semi-aquatic plant species by a buffer strip of native grasses such as local Danthonia, Poa and Themeda species, planted as Viro cells into mulched beds.

The use of clumping native grasses should also be encourage so to minimise the need for mowing of the wetland. It has been observed that maintenance mowing of the wetland perimeter area has a detrimental impact on fauna such a frogs, reptiles and turtles that may reside within wetland fringes.

8.5 Tree Planting

The plan proposes tree and shrub planting around the perimeter of each wetland cell and beside the open channel. This planting should be undertaken for the following reasons:

- To compensate for vegetation lost in construction of the wetlands;
- To augment the existing vegetation, and compensate for the lack of natural regeneration;

- To enrich wildlife habitat values;
- To provide wind protection for the wetlands;
- To create a buffer between other land uses and the wetlands; and
- To aid the visual integration of the wetlands with the broader landscape.

For this planting, the major species should comprise:

Acacia dealbata Acacia melanoxylon Eucalyptus ovata Eucalyptus viminalis Melaleuca ericifolia

As noted for wetland species, all trees and shrubs should be propagated from local provenance seed or cuttings. Plantings should be grouped into mulched beds and should consist of tube stock protected by plastic guards.

8.6 Rock Weirs

Rock for the construction of rivers, chutes, spillways and the like should be obtained from the local district. Wherever practicable, rock should comprise mixed-size or single size material as appropriate, with a proportion of large boulders included. Efforts should be made to make the rock construction appear similar to a natural rock outcrop.

8.7 Rocks Found on Site

Large rocks found on site should be stockpiled in an appropriate location to be used in the landscape construction works.

8.8 Maintenance

Consistent, regular monitoring and maintenance of all plant material is vital to the success of the project, with weed suppression being of prime concern. Particular attention should be given to weed control prior to planting and during the plant establishment phase.

9. Establishment, Maintenance and Lifecycle Issues

9.1 Water Level Control and Maintenance

9.1.1 Wetland Establishment

To plant out the wetland, the typical process would be to plant the deeper areas first and manipulate the water levels upwards as the other planting bands are established. Previous wetland designs (Knoxfield and Tanti Creek) provide an outlet pit, which can lower the NWL/OWL to suit the initial planting depths. The gate can then be raised to allow the established of the next band of planting. However due to the invert level of the Kelletts Road Main Drain and the level of Corhanwarrabul Creek, it is impractical to provide a variable gate to allow such a system and mechanical pumping will be required. The practical limit to the lowering of the NWL is to 300 mm, which would be more susceptible to backwater influences from Corhanwarrabul Creek.

The following process to control the water levels is recommend to be adopted for establishment and ongoing maintenance:

- Initially, allow the wetland to fill above the nominated levels;
- Once achieved, pumping of the wetland down to the level required. To minimise the locations of pumping, a low flow maintenance pipe has been specified to allow low flows to drain to the deep water area located at the outlet pit with the water discharged into the creek; and
- To prevent inflows to the wetland when maintenance is occurring, the sluice gate located in the diversion pit should be closed and the gate on the main line opened. This will allow the GPT to continue to provide some form of water quality treatment while the wetland is brought off line. This arrangement would maintain a low water during the establishment and maintenance period.

9.1.2 Sediment Pond Maintenance

The maintenance of the sediment pond would be similar to that of the wetland with the effluent pumped from the sediment pond. The gates in the diversion pit configured to prevent inflows into the sediment pond.

9.2 Ongoing Maintenance

There are items in the proposed wetland system that will require ongoing attention and maintenance. The key maintenance and lifecycle issues are expected to be as follows:

Table 10	Maintenance	Requirements
----------	-------------	--------------

Description	Assets	Maintenance Works	Frequency of Maintenance Works
Gross Pollutant Trap	Underground GPT	Removal of Captured Litter	Litter removal typically once every month
Wetlands	Wetland and associated water bodies including aquatic planting zones and plating areas up to the top water level.	Removal of litter	Litter removal typically a minimum of twice a year or as required.
	Aquatic Plants	Macrophyte harvesting	As required.
		Weed Removal	As a minimum 4 times a year.
		Lower the Orifice Plate during winter and remove plugs	During winter months when the NWL is raised for extended periods.
Sediment Ponds		Removal of litter	Litter removal as required.
		Removal of litter, sediment, weed control and nuisance species management (including algae, exotic fish, etc)	Sediment removal once accumulation is 500 mm below the normal water level or when it is significantly compromising the operation of the asset. Weed control generally four (4) times per year or as required
Rock Weir	Flow Control Structure	Removal of litter	Twice a year minimum
		Removal of sediment, silt, litter and organic material	Once accumulation compromises the pilot channel/low flow chase.

Description	Assets	Maintenance Works	Frequency of Maintenance Works
		Weed Removal	As a minimum 4 times a year.
		Rock Replacement	Inspection after storm events and as required.
Grassed Areas	All Terrestrial Grass Areas	Mowing	Monthly
		Removal of litter	As required
		Broad leaf weed spray	As a minimum 4 times per year.
Flow Control	Inlet Structures	Clear blockages upstream pipe diversion at Kelletts Road.	Inspect monthly.
Structures			Inspect integrity of structure annually.
	Outlet Structures	Clear blockages from orifice plate, and hood.	Inspect orifice plate and hood monthly.
			Inspect integrity of structure annually.
Path	3 m Wide Maintenance Track	Replacement of surface material.	Inspect annually.
		Broad leaf weed spray	As required.
Landscape Furniture	Signage	Repair of vandalised components	As required
	Entry Signage	Repair of vandalised components	As required
Fencing	Post and wire fence and tube fencing.	Maintenance and replacement.	As required to ensure that fence continues to serve intended function.

During the construction phase of the project the site will need to be managed to minimise the generation of pollutants and to trap pollutants prior to discharge to receiving waters. Minimisation of exposed soils, and the use of temporary filter zones, hay bales, silt fence and sediment traps will be required. Staging of works needs to be planned to provide for the trapping of sediments and monitoring of site practices.

10. Cost Estimates

A preliminary cost estimate has been prepared for the construction of the Kelletts Road Wetland, as outlined in the table below. The total estimated cost for the civil construction of the wetlands and associated infrastructure is **\$** 2 836 000.

The budget cost estimates presented in this section are typically developed based on extrapolation of recent similar project pricing, budget quotes for some equipment items, industry unit rates and GHD experience. The accuracy of these estimates is not expected to be better than about \pm 15% for the scope of work described in this report.

	Table II Reliens Road Wettahu. Civil		lates		
Item		Quantity	Unit	Rate	Total
1	PRELIMINARIES AND SITE ESTABLISHMENT				
1.1	Preliminaries, including site setup, insurances, Construction Plan, Quality Plan, OHS Plan, Environmental	1.0	Item		
	Management Plan, Set out and As Constructed Survey and all deliveries (not included elsewhere), all audits				
	required and all permits required to commence and complete the contract.			\$22 000.00	\$22 000
1.2	Geotechnical investigation (PROVISIONAL)	1.0	Item	\$5 000.00	\$5 000
1.3	Supply and install of all signage required, both for construction works and permanently around the site.	1.0	Item	\$2 200.00	\$2 200
1.4	Supply and construct tracks for construction vehicles (includes crossings as necessary) and any other access	1.0	Item		
1.5	tracks Traffic Management	1.0	Item	\$2 200.00	\$2 200
1.6	Tree and vegetation clearing	1.0	item	\$1 100.00	\$1 100
	EARTHWORKS	1.0	item	\$1 100.00	\$1 100
2	Strip topsoil, screen and stockpile on site (150 mm depth	6,331.0			
2.1	approx.)	0,00110	m³	\$3.00	\$18 993
2.2	Strip topsoil and dispose LOCALLY off site (150 mm depth approx allowance.)	3,129.0	m ³	\$12.00	\$37 548
2.3	Cut to fill	200.0	m ³	\$16.70	\$3 340
2.4	Cut to spoil (including cartage and disposal LOCALLY)	116,877.0	m ³	\$12.00	\$1 402 524
2.5	Trim and compact subgrade	62,792.0	m ²	\$2.00	\$125 584
2.6	Supply and place and compact 600 mm thick clay liner for wetland base	11,600.0	m ³	\$9.55	\$110 780
3	MAINTENANCE TRACKS & PATHS				
3.1	Maintenance track				
3.1.1	Supply and place 200 mm thick compacted 40 mm Class 3 crushed rock	719.0	m ³	\$50.04	\$35 979
3.2	Compacted Granitic Sand Path				
3.2.1	Supply, place and compact cement stabilised 75 mm thick granitic sand	24.9	m ³	\$64.00	\$1 594
3.2.2	Supply, place and compact 75 mm Class 2 crushed rock	24.9	m ³	\$50.00	\$1 245
4	SEDIMENTATION POND No. 1				
4.1	Supply and place 300 mm thick compacted rock $D_{50} = 130$, $D_{max} = 200$ mm	497.0	m³	\$84.00	\$41 748
4.2	Supply and place 600 mm thick graded rock	1,260.0	m ³	\$75.00	\$94 500
5	WETLAND INLET WORKS				
5.1	Excavation for drainage structures	240.0	m ³	\$35.00	\$8 400
5.2	Remove existing pipe (incl excavation and disposal fees)	6.0	m	\$100.00	\$600
5.3	Supply and install CDS P3030 or Equivalent GPT	1.0	each	\$230 000.00	\$230 000
5.4	Supply and install reinforced Sediment Pond Diversion Inlet Pit	1.0	each	\$15 000.00	\$15 000
5.5	Supply and install and backfill 375 mm dia RCP	67.0	m	\$250.00	\$16 750
5.6	Supply, install and backfill 1050 mm dia. RCP FJ	58.0	m	\$730.00	\$42 340
5.7	Supply and install 50 mm thick concrete blinding	1.0	m ³	\$268.80	\$269
5.8	Supply and install 600 mm thick graded rock D ₅₀ =300 mm	53.0	m ³	\$84.00	\$4 452

Table 11 Kelletts Road Wetland: Civil Cost Estimates

Item	Description	Quantity	Unit	Rate	Total
5.9	Supply and install 200 mm thick concrete maintenance pad	75.0	m³	\$236.25	\$17 719
5.10	End Wall				
5.10.1	Supply and place min. 900 mm dia large toe rock	14.0	m²	\$100.00	\$1 400
5.10.2	Supply and place 150 mm thick 50-150 mm min shot rock bedding	2.5	m ³	\$50.00	\$125
5.10.3	Supply and place mortar pad	0.5	m ³	\$150.00	\$75
5.10.4	Supply and place fine crushed rock	3.0	m ³	\$84.00	\$252
5.10.5	Supply and install Geotextile filtercloth	15.0	m²	\$2.50	\$38
5.10.6	Supply and install Geogrid reinforcement	15.0	m²	\$3.00	\$45
5.10.7	Supply and install 200 mm thick concrete cut off wall incl SL81 mesh	0.7	m³	\$236.25	\$165
6	WETLAND OUTLET WORKS				
6.1	Excavation for drainage structures	340.0	m ³	\$35.00	\$11 900
0.0	Supply, install 1050 mm dia FJ RCP (incl backfilling and	70 5		#75 0,00	\$50.075
6.2	cut off wall at levee)	70.5	m	\$750.00	\$52 875
6.3	Supply and install reinforced wetland outlet concrete pit Supply and install reinforced Junction pit with flood valve	1.0	each	\$25 000.00	\$25 000
6.4	and orifice plate	1.0	each	\$10 000.00	\$10 000
6.5	Supply and place 50 mm thick concrete blinding	1.0	m ³	\$286.80	\$287
6.6	End Wall				
6.6.1	Supply and place min. 900 mm dia large toe rock	14.0	m²	\$120.00	\$1 680
6.6.2	Supply and place 150 mm thick 50-150 mm min shot rock bedding	2.5	m ³	\$90.00	\$225
6.6.3	Supply and place mortar pad	0.5	m ³	\$150.00	\$75
6.6.4	Supply and place Fine crushed rock	3.0	m ³	\$84.00	\$252
6.6.5	Supply and install Geotextile filtercloth	15.0	m²	\$2.50	\$38
6.6.6	Supply and install Geogrid reinforcement	15.0	m²	\$3.00	\$45
6.6.7	Supply and install 200 mm thick concrete cut off wall incl SL81 mesh	0.5	m ³	\$236.25	\$118
7	PLATYPUS ACCESS				
7.1	Excavation for drainage	170.0	m³	\$35.00	\$5 950
7.2	Supply, install and backfill 375 mm dia. J RCP Class 2	86.0	m	\$250.00	\$21 500
7.3	Supply and install Platypus pit	1.0	each	\$5 000.00	\$5 000
7.4	Supply and install reinforced 900 x 900 Junction pit with pipe grate	2.0	each	\$3 500.00	\$7 000
7.5	Supply and place 150 mm (nom) grouted rock in platypus pit	1.5	m ³	\$500.00	\$750
7.6	Supply and install Hollow core Large woody debris	1.0	each	\$750.00	\$750
7.7	End Walls			•	
7.7.1	Supply and place min. 900 mm dia large toe rock	28.0	m ²	\$120.00	\$3 360
7.7.2	Supply and place 150 mm thick 50-150 mm min shot rock bedding	5.0	m ³	\$90.00	\$450
7.7.3	Supply and place mortar pad	0.5	m ³	\$150.00	\$75
7.7.4	Supply and place fine crushed rock	6.0	m ³	\$84.00	\$504
7.7.5	Supply and install Geotextile filtercloth	30.0	m ²	\$2.50	<u>\$304</u> \$75
		30.0	m ²	\$2.50	
7.7.6	Supply and install Geogrid reinforcement	30.0	111	Φ 3.00	\$90

ltem	Description	Quantity	Unit	Rate	Total
7.7.7	Supply and install 200 mm thick concrete cut off wall incl SL81 mesh	1.0	m³	\$500.00	\$500
7.7.8	Supply and install Large woody debris	2.0	each	\$100.00	\$200
7.7.9	Supply and install 100% recycled plastic post	8.0	m	\$120.00	\$960
7.7.10	Supply and install 5 mm galvanised wire	2.0	m	\$20.00	\$40
8	LANDSCAPING (Not covered in drawings)				
8.1	Supply and install inter dispersed large woody debris/stump	31.0	each	\$750.00	\$23,250
8.2	Supply and install 100% recycled plastic posts for large woody debris	112.0	m	\$40.00	\$4 480
8.3	Reinstate screened topsoil to wetland zone (150 mm thick min)	4,645.0	m³	\$3.00	\$13 935
8.4	Reinstate screened topsoil to remaining wetland and disturbed surrounds	1,690.0	m ³	\$3.00	\$5 070
9	MISCELLANEOUS				
9.1	Supply and install treated pine post fence and farm gate	122.0	m	\$120.00	\$14 640
9.2	Reconstruct levee	1.0	item	\$10 000.00	\$10 000
SUB-TO	DTAL				\$2 466 137
CONTI	NGENCY (15%)				\$369 921

TOTAL (incl. Contingency)

\$2 840 000

11. Conclusion

Kelletts Road Wetland and retarding basin has been designed to utilise the space to provide stormwater quality for the Kelletts Road catchment through the use of GPT, sediment pond and 4 ha wetland.

The wetland will be constructed between the Enterprise Estate and Corhanwarrabul Creek. The normal water level of the wetland is set at 50.10 m AHD and an operating water level of 50.60 m AHD. Whilst the wetland system does not meet best practice targets for pollution reduction they will provide the following potential reductions of pollutants entering Corhanwarrabul Creek:

- The mass of suspended solids removed each year is over 200 tonne;
- A reduction in approximately 0.4 tonne/year of phosphorus;
- A reduction of approximately 2 tonne/yr of nitrogen; and
- A reduction of approximately 54 180 kg/yr of gross pollutants.

The design and operation of the wetland is constrained within a narrow depth range defined by the invert level of the inlet diversion pipe and the tailwater conditions within Corhanwarrabul Creek. This may at times result in prolonged extended detention of the wetland, but not expected to affect the long-term performance.

The estimated civil costs of the wetland system are \$2.84 million, which includes the civil elements of the design.

Appendix A Preliminary Environmental Investigation

May 2009

CLIENTS PEOPLE PERFORMANCE

Melbourne Water Corporation

Kelletts Road Drain Wetland

Preliminary Environmental Investigation

May 2009

INFRASTRUCTURE | MINING & INDUSTRY | DEFENCE | PROPERTY & BUILDINGS | ENVIRONMENT

Contents

Intro	oduction	3
1.1	General	3
1.2	Scope of Work	3
Site	Characterisation	3
2.1	Site Description	3
2.2	Geology and Hydrogeology	4
Gui	delines for Investigation	6
3.1	Environmental Assessment Guidelines	6
3.2	Acid Sulfate Soil Assessment Guidelines	7
Res	ults of Environmental Investigation	9
4.1	Field Investigation	9
4.2	Field Observations	9
4.3	Laboratory Analysis	10
4.4	Results	12
4.5	Quality Assurance / Quality Control	15
Con	clusion and Recommendations	17
Limi	18	
	 1.1 1.2 Site 2.1 2.2 Guia 3.1 3.2 Res 4.1 4.2 4.3 4.4 4.5 Con 	 1.2 Scope of Work Site Characterisation 2.1 Site Description 2.2 Geology and Hydrogeology Guidelines for Investigation 3.1 Environmental Assessment Guidelines 3.2 Acid Sulfate Soil Assessment Guidelines Results of Environmental Investigation 4.1 Field Investigation 4.2 Field Observations 4.3 Laboratory Analysis 4.4 Results

Table Index

Table 1	Summary of Soil Analytical Program	10
Table 2	Soil Sulfide Hazard Classes	13
Table 3	Summary of Results and Classification of Soils.	14

Figure Index

Figure 1 Test Pits Location Plan

Appendices

- A Test pits Logs
- B NATA Laboratory Results and Chain of Custody Documentation
- C Tabulated Analytical Results

1. Introduction

1.1 General

GHD was engaged by Melbourne Water Corporation to undertake a preliminary environmental investigation to assist in the design and construction of a wetland for the Kelletts Road Drain that currently discharges into Corhanwarrabul Creek untreated. The wetland will act as a stormwater treatment system and comprise a sediment pond, and gross pollutant trap and diversion structure.

The purpose of the investigation was to investigate the presence of soil contamination and acid sulfate soils to characterise the excavated soil for re-use on site or off-site disposal.

1.2 Scope of Work

The scope of the preliminary investigation included the following:

Excavation of seven test pits using a 12 ton excavator;

• Visual logging of retrieved soil samples in accordance with GHD standard logging procedures, which are based on AS1726-1993 ('Geotechnical Site Investigations');

• Collection of representative samples of soil for laboratory testing including Suspended Peroxide Oxidisable Combined Acidity and Sulfate (SPOCAS) and a broad screen of potential inorganic and organic contaminants;

- Preparation of a report, including:
 - Description of the investigation methodology;
 - Assessment of subsurface conditions;
 - Laboratory test results;
 - Assessment of the presence of soil contamination and acid sulfate soils; and
 - Recommendations for sail management and/or further investigations at the site.

The fieldwork was undertaken in conjunction with a geotechnical investigation also being conducted for the site. The geotechnical investigation works have been reported separately.

2. Site Characterisation

2.1 Site Description

The site is located between Stud Road and Corhanwarrabul Creek and within the proposed Knox City Council Stamford Park development, approximately 27 km southeast from the Melbourne CBD. The proposed stormwater treatment system consists of a wetland extending across approximately 4 ha with a sediment pond and a gross pollutant trap and diversion structure. The site currently consists of a generally flat, grassed area sloping towards Corhanwarrabul Creek to the immediate north and north-west of the site.

2.2 Geology and Hydrogeology

The immediate geology of the area as indicated by the Australia 1:250,000 Geological Series Melbourne Map (Sheet No. SJ55-5) consists of the following geological units:

- Quaternary River Alluvium (Qra and Qrc) Sand, silt and clay and minor gravel;
- Devonian Humevale Siltstone (Dlh) Marine siltstone and minor sandstone;
- Silurian Dargile Formation (Sud) Marine siltstone and thin bedded sandstone
 Australia 1:250,000 Geological Series
 Melbourne Map (Sheet No. SJ55-5)

Site Location

The project site is located within the alluvial flats and the Quaternary River Alluvium is expected to underlie the site to a significant depth.

2.2.1 Hydrogeology

According to the Department of Natural Resources and Environment (DNRE) (1995) South Western Victoria water-table aquifers map, groundwater beneath the site would be classified as Segment B with a salinity range of 1 001-3 500 mg/L TDS. As the site is within river alluvium, and low lying, the groundwater depth at the site is considered to be relatively shallow within five metres of the surface. The nearest surface water body is Corhanwarrabul Creek, which is immediately adjacent to the site. Local groundwater is expected to be influenced by

Corhanwarrabul Creek to the immediate north and northwest of the site. However, it is likely that the regional groundwater flow direction is towards Port Phillip Bay in a Southwesterly direction.

3. Guidelines for Investigation

3.1 Environmental Assessment Guidelines

3.1.1 Land Beneficial Uses

The State Environment Protection Policy (SEPP) (Prevention and Management of Contaminated Land) 2002, applies to all land in the State of Victoria and is enforceable under Section 16 of the Environment Protection Act 1970. Commonly referred to as the 'Land SEPP', the policy provides beneficial uses to be protected under a number of different land use scenarios and provides indicators and objectives for protection of land. The Land SEPP endorses the National Environment Protection (Assessment of Site Contamination) Measure-1999 (herein referred to as the NEPM) as the key guidance document in contamination assessment and confirms that the ecological and human health investigation levels provided in the NEPM are the key objectives to be met for the protection of the beneficial uses of land.

The Land SEPP provides a framework for deciding which beneficial uses need to be protected having regard for the existing and intended uses of a site. Given the current and likely future use of the site for recreation/open space purposes, the Land SEPP identifies the following protected beneficial uses under this land use category:

- Maintenance of Ecosystems (highly modified ecosystems);
- Human Health;
- Buildings and structures; and
- Aesthetics.

3.1.2 Environmental Screening Criteria

In accordance with the Land SEPP, the Ecological Investigation Levels (EILs) provided in the NEPM have been adopted as the environmental screening criteria for the protection of Maintenance of Ecosystems.

3.1.3 Human Health Criteria

The Health Investigation Levels (HILs) provided in the NEPM (1999) have been adopted for the assessment of Human health in accordance with the requirements of the Land SEPP. The relevant HIL for this investigation is the NEPM 'E' HIL, which is relevant to parks, recreational open space and playing fields. This is based on the proposed on-going use of the site for recreational/open space purposes.

3.1.4 Other Beneficial Uses

With regard to the Buildings and Structures beneficial use, the Land SEPP defines the objectives to be met as 'Contamination must not cause the land to be corrosive to or adversely affect the integrity of structures of building materials'. This is normally assessed with reference to pH and sulfate.

With regard to the Aesthetics beneficial use, the Land SEPP defines the objectives to be met as "Contamination must not cause the land to be offensive to the senses of human beings". This generally refers to the presence of building rubble, odours and staining.

3.1.5 Waste Soil Classification

Concentrations of contaminants in soil samples have been compared to waste classification criteria provided in the Victorian Environmental Protection Agency (Vic EPA) Publication 448.3, *Classification of Wastes* (May 2007). This EPA guideline is used to classify soils for disposal offsite.

Publication 448.3 classifies soil into one of four categories, depending on hazard, these being fill material or, Category-C, Category-B or Category-A contaminated soil. Soil is categorised based on prescribed contaminant concentrations outlined in the following tables in Vic EPA Publication 448.3:

- Table 2 of Publication 448.3: Maximum contaminant concentrations allowed in soil to be disposed of as fill material;
- Table 3 of Publication 448.3: Maximum contaminant concentrations and leachable concentrations allowed in soil to be disposed of as Category C (contaminated soil); and
- Table 4 of Publication 448.3: Maximum contaminant concentrations and leachable concentrations allowed in soil to be disposed of as Category B (contaminated soil).

3.2 Acid Sulfate Soil Assessment Guidelines

Acid Sulfate Soils (ASS) are naturally occurring soils containing iron sulphides. The natural soils were formed within the last 10 000 years during the last sea level rise and intrusion. Due to the high level of sulfate within seawater and organic and iron rich sediments, iron sulphides were deposited in soils. ASS is produced when the iron sulphide rich sediments (which are generally in low lying and waterlogged areas) are exposed to air to produce sulphuric acid. The following state legislation and policies apply to ASS assessment and management in Victoria.

3.2.1 Industrial Waste Management Policy (Waste ASS)

The Industrial waste policy (Waste acid sulfate soils) 1999, provides a framework to prevent and regulate pollution from ASS in Victoria.

The Industrial waste management policy sets out the management regime for disposal and reuse of waste acid sulfate soils and specifies the responsibilities of those involved.

3.2.2 EPA Publication 655 Acid Sulfate Soil and Rock

EPA Publication 655 Acid Sulfate Soil and Rock (August 1999) is a guideline for assessment and provides definitions as well as an outline of identification, assessment, classification and management requirements and methodologies.

3.2.3 Draft Strategy for Coastal Acid Sulfate Soils in Victoria 2008

It was recognised that the above EPA policies and guidelines provided a hierarchy for management of acid sulfate soils, but focused largely on safe disposal and reuse. As such a

state wide coastal mapping program was undertaken in by DPI (2003) to provide guidance on the potential occurrence of coastal acid sulfate soils (CASS).

Since this pilot mapping study, a draft strategy for the management of coastal acid sulfate soils has been developed and was released in June 2008.

The draft strategy for coastal acid sulfate soils in Victoria builds on a number of policies and legislative initiatives. It relies on a risk-based assessment that follows four phases through from desktop reviews to best practise management plans.

As this draft management strategy considers previous policies and guidelines, it has been adopted as the assessment guideline for this investigation.

The objective of this strategy is to protect the environment, humans and infrastructure from the potential harmful impacts of disturbing CASS. This involves the protection of environment, social and economic, values of the coast and the avoidance of pollution and other activities that negatively impact on these values.

The draft strategy provides decision-making principles and a series of actions to achieve this objective. A risk management approach (Risk Management Process) to CASS is proposed in order that through greater awareness and understanding, decisions can be made around known risk. The implementation of best practise assessment and management techniques can ensure the consequences of activities in CASS areas can be reduced or eliminated.

4. Results of Environmental Investigation

4.1 Field Investigation

The field investigation work was undertaken on Wednesday 1st April 2009. A 12 tonne excavator was used to conduct the fieldwork supplied by Fulton Hogan. Fieldwork including soil sampling and logging was undertaken by a GHD geotechnical engineer and environmental scientist.

On-site underground service clearances of existing services and utilities were undertaken prior to the excavation of the test pits by Fulton Hogan.

Soil sampling was conducted in accordance with GHD Quality Assurance and Quality Control (QAQC) procedures, which was in general accordance with:

- National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measures 1999 (NEPM 1999); and
- Australian Standard AS4482.1 Guide to the investigation and sampling of sites with potentially contaminated soil, 2005 (AS4482.1-2005).

Based on an area of 4 ha, the Australian Standard AS4482.1 recommends a minimum of 50 sample locations; however on the basis that this is a preliminary investigation, and that the site is currently used for grazing, a total of seven investigation locations were considered appropriate. It is further noted that EPA publication 1178 provides guidance on the minimum number of samples required per volume of soil for disposal or re-use. As this is a preliminary investigation, and the volume of soil to be excavated is subject to final design of the wetland, this guideline has not been considered in this investigation.

A total of seven test pits were excavated for the investigation, to a maximum depth of 5.6 m below the existing ground surface. Samples were collected directly from the excavator bucket or small stockpile created (representative of the soil sampling depth) to avoid directly entering the pit. Samples were collected at near surface (approximately 0.1 m below ground level - mbgl) and subsurface intervals (0.5 mbgl, 1.0 mbgl and every metre thereafter), or where soil conditions changed within the soil profile or where contamination was suspected based on field observations. A total of 46 samples were collected, from the seven test pit locations.

The co-ordinate position of test pits was measured with a hand held GPS with a horizontal accuracy of +/- 5 m, however it is expected that the actual accuracy of the GPS would be +/- 1 m (see Appendix A for GPS co-ordinates on Test Pit Logs). The location of sampling points is shown on Figure 1.

Soils encountered were visually logged in accordance with the GHD Logging Procedures, based on the Australian Standard AS1726-1993.

Test pit logs are provided in Appendix A together with cross-sectional views of site lithology.

4.2 Field Observations

A description of lithology encountered at each location, including samples collected, is presented in the test pit logs provided in Appendix A.

Soils across the site appeared to be sedimentary alluvial soils consisting of a brown grey silt with abundant roots (at surface) to clay mottled brown, yellow, pale grey (generally from 0.4 to 4.0 m) with trace rootlets (to approximately 0.6 m), to clayey sand and sand (at depths greater than 4.0 m), consistent with the expected geology and natural soils of the area. Soils also became moist to saturated at approximately 4 m depth.

4.3 Laboratory Analysis

The analysed samples covered depths varying from 0.1 mbgl to 5.0 mbgl. All soil samples were submitted to the ALS Laboratory Group (ALS) for analysis. Sixteen samples were selected for acid sulfate soil analysis, and seven were selected for a Victorian EPA 448.3 Screen (refer to note 2 on Table 1). Samples not selected for analysis were placed on "hold" at the laboratory to allow them to be analysed at a later date, if required. ALS is accredited by the National Association of Testing Authorities (NATA) to perform the analysis undertaken in this investigation. All samples were submitted under Chain of Custody (COC) documentation.

NATA certified analytical results and COC documentation are provided in Appendix B. The analysis undertaken on selected samples, as part of the soil analysis program is listed in Table 1. Prior to selecting samples for SPOCAS analysis, all sub-surface samples were analysed for pHField and pHFox, a screening technique that assesses changes in pH due to oxidisation and aids in selecting samples for SPOCAS analysis. Where results reported a >2 pH unit change, it as considered possible that oxidation could occur. The pHfield and pHFox results are provided in Appendix C Table D1. Based on these results, soil composition and reaction rate, sixteen samples were selected for SPOCAS analysis. In addition to the primary soil samples, one (1) blind field duplicate sample was also collected and submitted for analysis as part of the QA/QC program.

SPOCAS is an acid base accounting test that includes measurement of the maximum oxidisable sulfur, Titratable Actual Acidity (TAA) and Titratable Peroxide Acidity (TPA) and the potential Acid Neutralising Capacity (ANC) present in the soil sample. The TPA result of SPOCAS represents a measure of the net acidity, effectively equivalent to the sum of the soil's potential sulfidic acidity and actual acidity. The calculated Titratable Sulfidic Acidity (TSA) is the difference between TPA and TAA. The peroxide oxidisable sulfur content (SPOS) provides a measure of the maximum amount of potentially oxidisable sulfur in the soil sample and represents the sulfur trail.

Test pit ID	Sample ID	Sample Depth	Analysis
	TP01_0.5-0.6	0.5-0.6 m	SPOCAS ⁽¹⁾ .
	TP01_3.0-3.1	3.0-3.1 m	SPOCAS ,
TP01	TP01_3.0-3.1	3.0-3.1 m	EPA 448.3 Screen ⁽²⁾
	TP01_0.5-0.6	0.5-0.6 m	Heavy Metals as per EPA 448.3 Screen

Table 1 Summary of Soil Analytical Program

Test pit ID	Sample ID	Sample Depth	Analysis
	TP02_0.5-0.6	0.5-0.6 m	SPOCAS ⁽¹⁾
TDOO	TP02_2.0-2.1	2.0-2.1 m	SPOCAS
TP02	TP02_0.5-0.6	0.5-0.6 m	EPA 448.3 Screen ⁽²⁾
	TP02_3.0-3.1	3.0-3.1 m	Heavy Metals as per EPA 448.3 Screen
	TP03_0.5-0.6	0.5-0.6 m	SPOCAS ⁽¹⁾
TDOO	TP03_2.0-2.1	2.0-2.1 m	SPOCAS
TP03	TP03_1.0-1.1	1.0-1.1 m	EPA 448.3 Screen ⁽²⁾
	TP03_4.0-4.1	4.0-4.1 m	Heavy Metals as per EPA 448.3 Screen
	TP04_0.5-0.6	0.5-0.6 m	SPOCAS ⁽¹⁾
	TP04_2.0-2.1	2.0-2.1 m	SPOCAS
TP04	TP04_0.5-0.6	0.5-0.6 m	EPA 448.3 Screen ⁽²⁾
	TP04_4.0-4.1	4.0-4.1 m	Heavy Metals as per EPA 448.3 Screen
	TP05_0.5-0.6	0.5-0.6 m	SPOCAS ⁽¹⁾
TDOF	TP05_4.0-4.1	4.0-4.1 m	SPOCAS
TP05	TP05_0.1-0.2	0.1-0.2 m	EPA 448.3 Screen ⁽²⁾
	TP05_0.5-0.6	0.5-0.6 m	Heavy Metals as per EPA 448.3 Screen
	TP06_0.5-0.6	0.5-0.6 m	
	TP06_3.0-3.1	3.0-3.1 m	SPOCAS ⁽¹⁾
TP06	TP06_4.0-4.1	4.0-4.1 m	
	TP06_0.1-0.2	0.1-0.2 m	EPA 448.3 Screen ⁽²⁾
	TP06_1.0-1.1	1.0-1.1 m	Heavy Metals as per EPA 448.3 Screen
	TP07_0.5-0.6	0.5-0.6 m	
	TP07_2.0-2.1	2.0-2.1 m	SPOCAS ⁽¹⁾
TP07	TP07_5.0-5.1	5.0-5.1 m	
	TP07_0.5-0.6	0.5-0.6 m	EPA 448.3 Screen ⁽²⁾
	TP07_2.0-2.1	2.0-2.1 m	Heavy Metals as per EPA 448.3 Screen

Notes

1. Suspension Peroxide Oxidation Combined Acidity and Sulfate (SPOCAS)

2. Vic EPA 448.3 Screen comprises Heavy Metals (Ag, As, Cd, Cu, Hg, Cr⁶⁺, Mo, Ni, Pb, Se, Sn & Zn), Cyanide, Fluoride, Polychlorinated Biphenyls (PCBs), Monocyclic Aromatic Hydrocarbons (MAHs), Volatile Halogenated Compounds (VHCs), Phenols, Polynuclear Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Total Petroleum Hydrocarbons (TPH)

4.4 Results

4.4.1 Contamination Assessment

The analytical results of samples obtained and analysed from the site are tabulated in Appendix C. As described in Section 3.1 the concentrations of the targeted contaminants were compared against environmental screening criteria and human health criteria.

All contaminants analysed reported concentrations below laboratory limits of reporting or below the adopted criteria.

4.4.2 Soil Disposal Assessment

Analytical results were compared to Vic EPA Publication 448.3, Classification of Wastes (May 2007).

All samples reported concentrations below the maximum concentrations for 'fill material'. The analytical results indicate that this would classify as fill material in accordance with EPA Publication 448.3. However, due to the limited sampling density and soil pH ranging from 5.0 to 6.3 pre-approval from the receiving landfill will need to be obtained before any soil is disposed from the site.

4.4.3 Acid Sulfate Soils Assessment

In accordance with the Draft CASS Strategy (DSE 2008) the following phases were conducted as part of the acid sulfate soil assessment.

Phase 1 - Desktop Acid Sulfate Soils Assessment

A review of the National Acid Sulfate Soils Map indicated that the site is situated within an area of low probability of containing acid sulfate soils. However, an area immediately north of Corhanwarrabul Creek is indicated to have a high probability of containing acid sulfate soils.

Given the proximity of this site to the probable acid sulfate soils, the presence of Quaternary sediments, and the low lying nature of the area, it was considered necessary to undertake assessment for coastal acid sulfate soils.

Phase 2 Acid Sulfate Soil Assessment

The Phase 2 ASS assessment included the following:

- Excavation of seven test pits to a maximum depth of 5.6 m to investigate the subsurface conditions (performed in conjunction with the geotechnical assessment);
- Logging of materials encountered within the test pits (performed in conjunction with the geotechnical assessment);
- Collection of representative soil samples for laboratory testing;
- Laboratory testing of the soil samples recovered from the test pits; and
- Assessment and classification of soils based on the analytical results.

Table 7 of Appendix 3b of the CASS Draft Strategy (DSE 2008) provides soil sulfide hazard classes, which are determined by the sulfur concentrations and net acidity, reported in the

SPOCAS analysis. Results from this investigation have been classified using this system. The Soil Sulfide Hazard Classes are reproduced in Table 2 below.

Risk Class		No R	lisk Class		Risk Class					
Hazard class	"No S	ulfur"	Non-Rea	ctive	Moder	ate Risk	High R	lisk		
Texture Group	Sulfur	Net Acidity	Sulfur	Net Acidity	Sulfur	Net Acidity	Sulfur	Net Acidity		
1 (Coarse)	1	N/A	>1 (<10)	<3	>1	>3	>10	>5		
2 (Medium)	2	N/A	>2 (<20)	<6	>2	>6	>20	>10		
3 (Fine)	3	N/A	>3 (<30)	<9	>3	>9	>30	>15		

Table 2 Soil Sulfide Hazard Classes

Source: Draft Strategy for Coastal Acid Sulfate Soils in Victoria, Victorian Steering Committee for Coastal Acid Sulfate Soils, Victorian Government Department of Sustainability and Environment, Melbourne, June 2008. All units in kg H_2SO_4/t

Laboratory Results

A summary of SPOCAS results is provided in Table 3.

				Peroxide le Sulfur	Net Acidity (/		
Sample ID	рН	Texture Group	moles H+/t	kg H₂SO₄/t	moles H+/t	kg H₂SO₄/t	Hazard Class
TP01_0.5-0.6_PartB	5.9	3	<10	<0.49	18	0.882	No Sulfur
TP01_3.0-3.1_PartB	5.8	3	<10	<0.49	11	0.539	No Sulfur
TP02_0.5-0.6_PartB	5.7	3	<10	<0.49	42	2.058	No Sulfur
TP02_2.0-2.1_PartB	5	3	<10	<0.49	24	1.176	No Sulfur
TP03_0.5-0.6_PartB	5.9	3	14	0.686	38	1.862	No Sulfur
TP03_2.0-2.1_PartB	5.6	3	<10	<0.49	13	0.637	No Sulfur
TP04_0.5-0.6_PartB	6	3	<10	<0.49	26	1.274	No Sulfur
TP04_2.0-2.1_PartB	5.8	3	<10	<0.49	10	0.49	No Sulfur
TP05_0.5-0.6_PartB	5.9	3	<10	<0.49	29	1.421	No Sulfur
TP05_4.0-4.1_PartB	5.6	3	<10	<0.49	13	0.637	No Sulfur
TP06_0.5-0.6_PartB	5.8	2	<10	<0.49	30	1.47	No Sulfur
TP06_3.0-3.1_PartB	5.6	3	<10	<0.49	13	0.637	No Sulfur
TP06_4.0-4.1_PartB	6.3	2	<10	<0.49	<10	<0.49	No Sulfur
TP07_0.5-0.6_PartB	5.3	3	<10	<0.49	20	0.98	No Sulfur
TP07_2.0-2.1_PartB	5.9	3	<10	<0.49	20	0.98	No Sulfur
TP07_5.0-5.1_PartB	5.8	1	<10	<0.49	<10	<0.49	No Sulfur

Table 3 Summary of Results and Classification of Soils.

Note: Texture Group 1 – Sands Texture Group 2 – Loams/Silts-Light Clays Texture Group 3 – Medium to Heavy Clays, Silty Clays

All SPOCAS results reported concentrations of peroxide oxidisable sulfur below 2 kg H_2SO_4/t , indicating that the soils are within the 'No Risk' category.

The pH of the soils ranged from 5.0 to 6.3 indicating that soils are slightly acidic. In such conditions, metals such as aluminium and iron, as well as trace heavy metals can become more soluble and more easily mobilised by infiltrating waters. Whilst there is no evidence that high concentrations of heavy metals exist at the site, the surrounding land (soil), underlying groundwater and nearby waterways has the potential to be impacted if the site is not managed appropriately. Acidic soils may also cause impacts to construction materials through corrosion (such as concrete, steel and asphalt).

Phase 3 and 4 - Management

As the soil has been indicated as 'No risk', no management plan is required under the CASS draft strategy (DSE 2008).

4.5 Quality Assurance / Quality Control

Established quality assurance/quality control (QA/QC) procedures to assess data quality were maintained throughout the project. The QA/QC program undertaken as part of the assessment included the following:

- Use of qualified and trained staff;
- Preservation of samples with ice during transport from the field to the laboratory;
- Transportation of samples with accompanying chain-of-custody documentation;
- Compliance with sample holding times;
- Review of results of a blind duplicate sample;
- Review of internal analysis of laboratory duplicates, spikes and blanks.

The QC program employed during this investigation was in accordance with the general requirements set out in the Australian Standard AS4482.1 (2005). QC samples provide information that discounts or potentially identifies errors due to possible sources of cross contamination, inconsistencies in sampling and analytical techniques used. The QC program completed included the collection and analysis of duplicate samples. The samples collected as part of the quality assurance program for this project are described below:

- Blind Duplicate Samples: These are coded duplicate samples submitted to the primary laboratory for analysis as individual samples without any indication to the laboratory that they have been duplicated.
- Split Samples: These are duplicate samples split in the field, with one sample being sent to a secondary laboratory for check analysis. The same parameters are analysed utilising similar analytical techniques. No split samples were undertaken during sampling.
- Rinsate Samples: Rinsate Blanks or equipment blanks monitor possible contamination that may be introduced by inadequate equipment decontamination. Samples are collected at a frequency of 1 per 20 samples or 1 per day whichever is the greater. Equipment blanks should not return any positive results on analysis. No rinsate samples were collected during

sampling, due to direct collection of soil samples from the excavator bucket or small stockpile by hand.

4.5.1 Quality Control Assessment Results

A quantitative measure of the accuracy of the check analyses results obtained was made using calculated relative percentage difference (RPD) values. The RPD values were calculated using the following equation.

$$\mathsf{RPD}(\%) = \frac{\langle Co - Cs \rangle}{\langle \frac{Co + Cs}{2} \rangle} \mathsf{x} \quad 100$$

where Co = concentration obtained from the original sample

Cs = concentration obtained from the duplicate sample

Blind Duplicate

A summary of RPDs for field QAQC samples for the soil analysis is shown in Table D3 (Appendix C). A total of 111 primary/duplicate pairs had RPDs calculated for them. All 111 RPD values calculated between the primary sample (TP01_3.0-3.1_Part A) and laboratory blind duplicate sample (DUP01_Part A) were within the acceptable limits (<50%).

Laboratory Internal Quality Control

Internal QC results consisted of matrix spikes, method blanks and internal duplicate RPDs and were reported within acceptable limits.

Holding Times

No sample to extraction holding times were exceeded.

Conclusions of QA/QC Program

Based on the QA/QC program, it is concluded that the analytical data of the soil sampling is of reliable quality and suitable for the assessment made in this report.

5. Conclusion and Recommendations

The environmental investigation undertaken at Kelletts Road Drain indicated that contaminant concentrations were within the adopted guidelines and no potential acid sulfate soils were identified at the site.

The soil generated during construction may be removed from the site as fill material in accordance with EPA Publication 448.3. However, due to the sampling density and soil pH ranging from 5.0 to 6.3. Pre-approval from a receiving landfill is recommended before any soil is removed from the site.

6. Limitations

This report presents the results of an investigation and assessment program to determine the presence of a broad range of potential contaminants in site soils, and was produced specifically for Melbourne Water Corporation and for the purposes of this commission. No warranties, expressed or implied, are offered to any third parties and no liability will be accepted for use of this report by any third party.

This report presents the results of a contaminated site investigation conducted specifically for the purposes of this commission. The data and advice provided herein relate only to the project and structures described herein and must be reviewed by a competent Environmental Scientist or Engineer, experienced in contaminated site investigations, before being used for any other purposes. GHD accepts no responsibility for other use of the data.

Where drill hole or test pit logs, laboratory tests, geophysical tests and similar work have been performed and recorded by others the data is included and used in the form provided by others. The responsibility for the accuracy of such data remains with the issuing authority, not with GHD.

The advice tendered in this report is based on information obtained from the investigation locations, test points and sample points and is not warranted in respect to the conditions that may be encountered across the site at other than these locations. It is emphasised that the actual characteristics of the subsurface and surface materials may vary significantly between adjacent test points and sample intervals and at locations other than where observations, explorations and investigations have been made. Sub-surface conditions, including groundwater levels and contaminant concentrations can change in a limited time. This should be borne in mind when assessing the data. However, it is our opinion that the test points chosen are representative of conditions on the site.

It should be noted that because of the inherent uncertainties in the sub-surface evaluations, changed or unanticipated sub-surface conditions may occur that could affect total project costs and/or execution. GHD does not accept responsibility for the consequences of significant variations in the conditions.

An understanding of the site conditions depends on the integration of many pieces of information, some regional, some site specific, some structure-specific and some experienced based. Hence this report must be read in full and should not be altered, amended or abbreviated, issued in part or issued incomplete in any way without prior checking and approval by GHD. GHD accepts no responsibility for any circumstances that arise from the issue of the report that has been modified other than by GHD.

Figures

Figure 1 Test Pits Location Plan

Appendix A Test pits Logs

		ent oject									TEST	PI	ΓN	o. TP01	
	Location : Rowville												SHI	EET 1 OF 1	
	Ро	sitic	on: 344213.0 E,5	802362	2.0 N		MGA94				0.7	m	Processed: ASF		
	Ex	cava	ator: 12T Excavato	r				Contractor	: Fulton Hoga	n	Pit Length: 5.0m			Checked:	
F	Da	ite :	1/4/09								Logged by	/:AS	F	Date:	
┢	EXCAVATION MATERIAL													_	
() (scale (m)	Water	Samples & Tests	Depth (m)	Graphic Log	Group Symbol			Descripti our, structure, minor and 'PE, colour, grain s weathering, stren)	Moisture Condition	Consistency / Relative Density	Comments Observations		
		GNE	TP01_0.1-0.2m TP01_0.5-0.6m	0.40		ML CH	CLAY	rey, abundar				D	F		
	1		TP01_1.0-1.1m B @ 1.0m	0.70			occasior	nal cacarious mottled yellow	material inclu	orown staining, isions ome dark brow	 n	M	St	1	
	2		TP01_2.0-2.1m B @ 2.0m											2	
	3		TP01_3.0-3.1m B @ 3.0m	3.00 -3.00 3.70 -3.70		:		nal dark brov edium graine	vn moist to we	et bloches.		-		3	
	4		TP01_4.0-4.1m B @ 4.0m	<u>4.00</u> -4.00				Terminated a						4	
														5	
	5													6 -	
2															
L.GUI 2//#//						a l									
							1. A. A.					20. 20.			
					Ex.					1					
Ω Π	de	tails	andard sheets for of abbreviations s of descriptions		HD	Lvl 8 T: 6	8, 180 Lons 1 3 8687 8	3000 F: 613	elbourne VIC 3 8 8687 8111 E	0000 E: melmail@ghd. ERS AND GEO	.com.au DLOGISTS		J	ob No. 31\22036	

		ent ojec									TEST	PIT	No.	TP02		
		-	on: Rowville										SHEET	1 O I	F 1	
	Po	sitio	on: 344311.0 E,5	80238	4.0 N		MGA94	Surface RL	: 0.0m		Pit Width:	0.7	m	Process	sed:	ASF
H			ator: 12T Excavato	r				Contractor	: Fulton H	ogan	Pit Length			Checke	d:	
F	Da	te :	1/4/09				Logged by					: AS	F	Date:		
┢		E	XCAVATION		_		MATERIAL									
1	Ê		S S S S S S S S S S S S S S S S S S S	(L)	Graphic Log	-		SOIL TYPE, color	Descr ur, structure, n	iption ninor components (orig	in)	Moisture Condition	lcy / Densit	Com Obser	vatio	
	scale (m)	Water	Samples & Tests	Depth (m)	raphi	Group Symbol		ROCK TY	and PE, colour, gra	ain size, structure, strength		oistu ondit	sister ative [
C	ñ	5		ā	U				weathering, s	arengun		ΣŬ	Con Rela			
E			TP02_0.1-0.2m	0.40		ML	TOPSO Brown a		rootlets.	trace fine graine	d sand.	D	F			
Ē			TP02_0.5-0.6m	-0.40 -0.70 -0.70		СН	CLAY			h brown staining						-
E	1		TP02_1.0-1.1m	-0.70						mottled yellowis		М	St			1 -
Ē			B @ 1.0m													
E																-
Ē	2		TP02_2.0-2.1m	2.00 -2.00				h brown mottl	n <u>ale</u> n	ey, occasional b						2
E			B @ 2.0				spots.	norminou	eu pale gi		JOWN					-
Ē				2.70 -2.70			Trace m	edium to coa	rse graine			-				-
F	3		TP02_3.0-3.1m B @ 3.0	<u>3.00</u> -3.00				Terminated a	-							- 3 -
E							TESTFIL	reminated a	t 3.0m.							-
Ē																-
Ē	4															4 -
Ē																-
E	_															_
Ē	5															5 -
F																-
Ē	6															6 -
Ē																-
ŧ																-
E	7															7
2/14/08																
				and and			19-9-1									
UESA	+															
С 2 2	+					1				A Thursday	New Mean	at de l	-			
/IPLA						and the second	A. J. M.					19. m	and a			
		_				- ANA				S. Barle B	1.5			-		
Ш С С	-					The second	1.5			et alle so	and the second second	A State		Al		
н <u>о</u> —	+			24			1				Chines -	S.	Nic	S.F.		
500				XP	1/10	Mar.	A A				Starting Stands	a contraction		1 M		
	+															
1	Ser	e st	andard sheets for	r I		I GH	D GEO	FECHNICS					Job	NO.		
	det	ails	s of descriptions	Ć	iHD	Lvl 8 T: 6	, 180 Lons 1 3 8687 8	dale Street, Me 8000 F: 61 3	8687 8111	C 3000 E: melmail@gh NEERS AND GE				31\22(036	

		ient oject								TEST	PI٦	ΓΝ	o. TP03	
		catio										SHE	EET 1 OF 1	
	Ро	sitic	on: 344406.0 E,5	802365.0	N	MGA94 Surface RL: 0.0m Pit V			Pit Width:	0.6	m	Processed:	ASF	
			ator: 12T Excavato	r			Contractor	Fulton Hogan		Pit Length: 4.5m			Checked:	
F	Da	ite :	1/4/09							Logged by	: AS	F	Date:	
┢		E	XCAVATION		_		MAT	ERIAL				<u> </u>		
	Scale (m)	Water	Samples & Tests	Depth (m) Granhic Lon	Group Symbol		ROCK TYP	Description r, structure, minor cor and PE, colour, grain size, weathering, strength)	Voisture Condition	Consistency / Relative Density	Comments Observation	
F		GNE	TP03_0.1-0.2m		ML	TOPSO	I - SILT				D	ပိၕိ F		
Ē			TP03_0.1-0.2m TP03_0.5-0.6m	0.40 <u>-</u> -0.40 <u>-</u> 0.70 <u>-</u>		Pale bro CLAY	wn pale grey,	abundant rootle						-
	1		TP03_1.0-1.1m B @ 1.0m	-0.70				ish brown, some lowish brown, tra		´	M	St		1 -
														•
	2		TP03_2.0-2.1m B @ 2.0m											2
	3		TP03_3.0-3.1m	2.70		Grey, m	ottled yellowis	h brown, occasi	ional brown	patches.	M-W	-		3 -
	_		B @ 3.0m											-
E	4		TP03_4.0-4.1m B @ 4.0m	4.00										
						Test Pit	Terminated at	: 4.0m						-
	5													5 -
F														-
	6													6 -
E	7													
ſ														
2/14/02														
ESAL.GU			1							X				
												<u>84</u>		
									AN			10. ×		
Ц СН О Н О Н О Н О Н О Н О Н О Н О Н О Н						A.			120	- for		1		
-069.6PJ					MAKE AN									
	Se	e sta	andard sheets for			D GEO	ECHNICS					J	ob No.	
Ц Ц	de	tails	of abbreviations s of descriptions		T: 6	1 3 8687 8	6000 F: 61 3	lbourne VIC 3000 8687 8111 E: n CAL ENGINEERS	nelmail@ghd.			Job No. 31\22036		

		ient oject			•					TEST	PI٦	ΓΝ	o. TP04
		catio										SHE	EET 1 OF 1
	Ро	sitic	on: 344481.0 E,5	80243	8.0 N		MGA94	Surface RL:	0.8	m	Processed: ASF		
	Excavator : 12T Excavator							Contractor :	: 6.0	m	Checked:		
L	Da	ite :	1/4/09							Logged by	/: AS	F	Date:
╞		E	XCAVATION					MATE	ERIAL Description				
	Scale (m)	Water	Samples & Tests	Depth (m)	Graphic Log	Group Symbol		SOIL TYPE, colour ROCK TYPI v	Consistency / Relative Density	Comments Observations			
		GNE	TP04_0.1-0.2m TP04_0.5-0.6m	0.60 -0.60	 	ML		IL- SILT wn grey, abun	dant rootlets.		M-D	F	
	1		TP04_1.0-1.1m B @ 1.0m	-0.60 1.00 -1.00		СН			gish brown staining, som wn, mottled grey.	e rootlets.	м	St	1 -
	2		TP04_2.0-2.1m B @ 2.0m	1.70 -1.70			Yellowis sand.	h brown mottle	F	F 2			
	3		TP04_3.0-3.1m B @ 3.0m										3
Ē	4		TP04_4.0-4.1m B @ 4.0m	4.00			Tost Dit	Terminated at		4			
													5
11	7												7
	Se	e sta	andard sheets for			GH						J.	
details of abbreviations & basis of descriptions						Lvl 8 T: 6	, 180 Lons 1 3 8687 8	sdale Street, Mel 3000 F: 61 3 8 GEOTECHNIC		31\22036			

	Project : Kellets Road Drain Wetland											No. TP05							
	ocat	ion: Rowville													SH	EET	1	OF	1
	ositi			0.0 N		MGA94		e RL: 0					Pit Width:					essed	ASF
		vator: 12T Excavato	r				Contra	actor: F	ulton Ho	gan			Pit Length					cked:	
	ate :											l	ogged by	y : AS	SF		Date):	
\vdash	E			_				MATER							>		-		
Ê		S a	(u)	Graphic Log	_		SOIL TYP	E, colour, st	Descrip ructure, mir		ponents	(oriain)		e c	Consistency / Relative Density			comme oservat	
Scale (m)	Water	Samples & Tests	Depth (m)	raphi	Group Symbol			OCK TYPE, o	and colour, grain	n size, s		,		oistui	sisten tive D				
й	S	ഗ്ഷ	ă	Ō	9 S			wea	thering, str	ength				Σč	Con				
Ē		TP05_0.1-0.2m	0.40		ML		OIL- SILT own pale			rainec	sand	ahun	dant	D	F				
E		TP05_0.5-0.6m	0.40 -0.40	<u> </u>	СН	Rootlets		groy, m	salam g		Jana	, abui		1	St				
Ē,		TP05_1.0-1.1m	1.00 -1.00				mottled p												1
Ē		B @ 1.0m	-1.00				sh brown,							М					I
Ē																			
E ₂		TP05_2.0-2.1m	2.00 -2.00				· – – – –	-,	-,-,										2
Ē		B @ 2.0m	-2.00			Occasio	onal dark	g nwora	atches.										2
E																			
E ₃		TP05_3.0-3.1m	3.00 -3.00											4					3
Ē		B @ 3.0m	5.00			Some C	coarse an	iyular gra	an ieu sa	nu inc	NUSION	э.							
Ē																			
E4		TP05_4.0-4.1m	4.00 -4.00			Grev m	nottled ye	llowish h		· ·				+					4
ŧ		B @ 4.0m					.ottiou ye												
E																			
Ē5	┝	B @ 5.0m TP05_5.0-5.1m	5.00 -5.00		SC		Y SAND							w	L				5
E		TP05_5.5-5.6m	5.50			Grey, s grained	ome orar sand.	ngish bro	wn patc	hes, c	oarse	angu	ar						
Ē		B @ 5.5m	5.50 5.60 -5.60		СН	CLAY with SAND Yellowish brown, mottled grey, coarse grained sand.								<u>M</u>	St				
E6						Test Pit	Termina	ted at 5.	6m	Jaise	yraine	u san	u						6
Ē																			
Ę,																			_
f																			//
"																			
711400																			
				4		R. Fr				╞╌┎╧									
			E Frank		*	180												-	
<u>ז</u> 					1	1 Ac					del altra						manal		
										experies a		d	C A					t	
						1.5							2350	15	1	*	R.		
3			ALC: NO								F A		A D.C.		A. A.				
			TRA			-				1 st		A la	San Carl	9. A.		1	8. 4	5	
			TR.	1	- 4	1				54					- All the		X	a contraction of the second se	
ģ			Central I		Nr. Mar													-	
-																			
0		tandard sheets for s of abbreviations		HD	Lvl 8	GHD GEOTECHNICS Lvl 8, 180 Lonsdale Street, Melbourne VIC 3000							J	ob N			_		
		is of descriptions			1	61 3 8687 8000 F: 61 3 8687 8111 E: melmail@ghd.com.au								31\22036					
5	bus				CON	NSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS													

		oject : Kellets Road Drain Wetland											PIT No. TP06					
L	-00	catio	on: Rowville										SHEET 1 OF 1					
,								MGA94 Surface RL: 0.0m Pit Width:						P	rocesse	d: ASF		
Ŀ	Excavator : 12T Excavator							Contractor :	Fulton Hoga	n	Pit Length							
Ľ	Da	te :	1/4/09								Logged by	: AS	۶F	0	ate:			
\vdash		E)	XCAVATION					MATI	ERIAL									
Scale (m)		Water	Samples & Tests	Depth (m)	Graphic Log	Group Symbol		Description SOIL TYPE, colour, structure, minor components (origin) and ROCK TYPE, colour, grain size, structure, weathering, strength							Comments Observations			
	(GNE	TP06_0.1-0.2m TP06_0.5-0.6m	0.40 -0.40 0.70 -0.70		ML ML CH	SILT -Qark bro	IL- SILT irey, trace sand own grey, som		rootlets.	/	D	F St-F					
			TP06_1.0-1.1m B @ 1.0m					CLAY Brown, mottled pale grey, mottled pale yellowish brown.								1		
	2		TP06_2.0-2.1m B @ 2.0m	2.00 -2.00		- сн	Trace fine to medium grained sand.						F		2			
13	3		TP06_3.0-3.1m B @ 3.0m	3.70 -3.70		SC	CLAYEY SAND									3		
	ŀ		TP06_4.0-4.1m B @ 4.0m				Grey, mottled brown, coarse angular grained sand.						L			4		
5			TP06_5.0-5.1m B @ 5.0m	<u>5.00</u> -5.00			Test Pit	Terminated at					5-					
	5													6				
				STATE OF	E Pr	1												
		e st:	andard sheets for	- -		GH	D GEO	TECHNICS					Jc	bb No.				
details of abbreviations							8, 180 Lons 1 3 8687 8	180 Lonsdale Street, Melbourne VIC 3000 3 8687 8000 F: 61 3 8687 8111 E: melmail@ghd.com.au SULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS						31\22036				

		ent : oject							۲No	No. TP07							
		catio											SHEET 1 OF 1				
	Po	sitio	on: 344337.0 E,5	80250	9.0 N		MGA94 Surface RL: 0.0m Pit Width:						m	Processed:	ASF		
	Excavator : 12T Excavator							Contractor :	Fulton Hog	lan	Pit Length:	5.0	m	Checked:			
Ľ	Da	te :	1/4/09								Logged by	by : ASF Date:					
	-	E	KCAVATION					MATE	ERIAL								
Scala (m)		And Markov Book Book Description Solution Solution Solution Solution Solution Solution Solution Solution<										Moisture Condition	Consistency / Relative Density	Comments Observation			
E	(GNE	TP07_0.1-0.2m	0.30 -0.30		ML	TOPSO	IL- SILT own pale grey,	abundant r	ootlets		D	F				
F			TP07_0.5-0.6m			СН	CLAY				/				-		
			TP07_1.0-1.1m B@ 1.0m	0.70 -0.70				rey, mottled ye ottled yellowish				M	St		1 -		
	2		TP07_2.0-2.1m B@ 2.0m	2.00 -2.00				h brown, mottle	ed pale gre	ey, occasional	calcarious		— —. F		2 -		
	3		TP07_3.0-3.1m B@ 3.0m	3.00 -3.00			Occasional dark brown spots, occasional medium grained								3 -		
	ŀ		TP07_4.0-4.1m B@ 4.0m	4.10 -4.10		SC	Sand.								4 -		
	5		TP07_5.0-5.5m	4.70 -4.70		SP	Grey, occasional yellowish brown spots, coarse angular grained sand. SAND Grey, some brown patches, coarse angular elongated								5 -		
			B@ 5.0m TP07_5.5-5.6m B@ 5.5m	5.50 5.60 -5.60		CI	grained sand. CLAY with SAND Vellowish brown, mottled pale grey, medium to coarse										
	5						grained sand. Test Pit Terminated at 5.6m.								6 -		
	+				alex Sex.												
				Antin 1 Par	144		10				-						
	+									-	Real of						
-	+									A LONG AND	at the Mark		1				
						has				-		6		- Alle			
	_						ton.				at the	-					
	_										A CA	Ser Ser					
2000	ſ													a de la			
	+																
														<u> </u>			
	let	ails	andard sheets for of abbreviations		HD	Lvl 8 T: 6	8, 180 Lons 1 3 8687 8		8687 8111	E: melmail@gl			Job No. 31\22036				
Ĺ	& basis of descriptions T: 61 3 8687 8000 F: 61 3 8687 8111 E: melmail@ghd.com.au CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS																

Cad File No: Section CD.dwg

Appendix B

NATA Laboratory Results and Chain of Custody Documentation

HO FULTON HOGAN Tel: 0418 572 137 Lab. Name: ALS Factor 0-30 DANA COURT DANDENONG Fax: CONTACT PHIL RILEY Lab. Address: 2-4 Westall Rd, Springvale, VIC 3171 Price 0-30 DANA COURT DANDENONG Fax: CONTACT PHIL RILEY Lab. Address: 2-4 Westall Rd, Springvale, VIC 3171 Price 0-30 DANA COURT DANDENONG Fax: CONTACT PHIL RILEY Lab. Address: 2-4 Westall Rd, Springvale, VIC 3171 Price 0-30 DANA COURT DANDENONG Fax: CONTACT PHIL RILEY Lab. Ref: Contact Name: Contact Name: Contact Name: Contact Name: Project Name: <		WATER WATERW			(18101001	<u> </u>							CHAI		000			1	from 1					EMOC		$\underline{-}$
Peadfieldings: Ves (tick) Analyses Population Upper 17.4 regulard? (bissis circle 24r 49r 3days) URCENT 5 DAY PRELIM BY SAPROP PLEASE Image: Circle Analyses Population Is any seturation of the s	DANA COURT	DANDENONG	Fax: CONTA E-mail: phil.	CT PHIL RIL .riley@fulto	nhogan.co						Lab. Name: Lab. Address Contact Nam	5:			2-4 W			wale, Vi	C 3171		Fir	ix: eliminaŋ nal Repo	61 3 85 61 3 85 Report by ort by: 15 A No: ME/3 6	49 9601 ; 8 Apr 09 pril 09	~	1.
Ungent TAT required? (please circle: 24/r 48/r 3 days) <u>URGENT 5 DAY PRELIN BY BAPROP PLEASE</u> mg Fast AT Claumine Required? NO		RILEY	MWWA Proj	ect No: PD40	008						Project Name	e: PD400	8 Kelletts	Road D	rain We	tland										
Uppert 10/10 Sample ID Sample ID Matter stream Product ID Sample ID	fications:										Yes (tick)	[·····		Analy	sis Req	uest						_
If any standing time resultance Required NO Image standing time to be excluded from extractions? IMA Image standing time reported in easily the reported as get VEM 5.117? NO Is any standing time reported in easily the reported	ient TAT requir	ed? (please nircle) ?/hr	48br 3da	We) LIRGEN	TEDAVE	DEI 114 DV					(,	l !			Hg, 448								N S		Dther	m
x. a zerial docs material remotes that a remote the samples to a reported is a set format (BHC) report (Bit set format (BHC) report (Bit set format (BHC) Report format: Fax ND Hinddopy, YES _ CSV Format: YES _ mail: YES solid diverge retrievalue Container Lab. Sample: ID Date solid liverge retrievalue Container Lab. Sample: ID Date solid liverge retrievalue Container 1D Sample: ID Date solid liverge retrievalue Container 1D Sample: ID Date solid liverge retrievalue Container 11 TP01_D.1.0.2.PartA 104/2009 X X Sussain R X Sussain R 1 TP01_D.5.0.6.PartA 104/2009 X X Sussain R X X Sussain R X Sussain R X X			40111 300	iys) <u>ortgen</u>	JUMIT	NELIM DI (OMF IND	FLEAGE				L.			Pb.								6 WEEKS			1
*. a definition remotes from simples to reported is get format (3FD)												1 K			Ser Cu								8 8			L
D: justini rindesigne ibourievaler.com.au; and phili.rite/g0utionhogan.com.au time X Matrix Preservation Container Lab. Sample ID Date soil water sediments filted acid ice offeet filted					M 5.1.1?: I	NO						3			/I),(I/ as F								HE C J			1
TP01_0.1_0.2_PartA 104/2009 X X GLASS JAR Image: Constraint of the constrant of the co	oort Format: F	ax: NO Hardcopy: YES .CS	V Format: YE	S Email: YE		ıu			EN	1AIL	x	ETIN 448	-	id pHFox	, Cd, Cr() , Ag, Zh)							KEEP FROZEN	STORE UNTIL FURTHER INSTRUCTIONS OR FOR 6 PRIOR TO DISPOSAL			
TP01_0.1_0.2_PartA 104/2009 X X GLASS JAR Image: Control of the state of the stat	Lab	r	Compline		Matrix			Drogan	tion		Container	3	St	dar	As Se							FRO	552			
TP01_0.1_0.2_PartA 104/2009 X X 0LAS JAR Image: Constraint of the state of the st		Sample ID			1	stream		1	· · ·		Container	ABL	ő	Fie	stals N.							<u>di</u>	STR			ĺ
IP01_01_02_PartB 1042009 X X 2PLOCK BAG X Image: Constraint of the second sec	<u>ט</u>		Date	SOII	water		mr.ed	acid	ice d	oner	(NO. & type)	ш <u>Е</u>	ង	<u></u>	žž				_ <u>_</u>	<u> </u>		¥.	IS Ä Å			Ļ
I TPD1_0.5-0.6_PartA 104/2009 X X Quarks JAR X X Quarks JAR TP01_0.5-0.6_PartB 104/2009 X X 2/PLOCK BAG X Imp1_10-11.0_partB Imp1_10-10.0_partB Imp1_10-10.0_partB <td< td=""><td></td><td>TP01_0.1_0.2_PartA</td><td>1/04/2009</td><td>X</td><td></td><td></td><td></td><td></td><td>X</td><td></td><td>GLASS JAR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> ¥</td><td></td><td></td><td>Ĺ</td></td<>		TP01_0.1_0.2_PartA	1/04/2009	X					X		GLASS JAR												¥			Ĺ
TP01_0.5-06_Part8 104/2009 X X ZPLOCK BAG X GLASS JAR TP01_1.0-1.1_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_0.2-0.2_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_0.2-0.2_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_0.2-0.2_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_0.2-0.2_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_0.2-0.2_PartB 104/2009 X X GLASS JAR X GLASS JAR TP01_0.0-1.0_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_0.0-1.0_PartA 104/2009 X X GLASS JAR X Z FMO0_0.02_06.06_00 X X GLASS JAR X Z FMO0_0.02_06.06_00 X X		TP01_0.1_0.2_PartB	1/04/2009	х	-		1		x		ZIPLOCK BAG	1		X								X	k			ſ
TP01_10-11_PartA 104/2009 X X GLASS JAR Image: Constraint of the con	1	TP01_0.5-0.6_PartA	1/04/2009	X					x		GLASS JAR	,			X			_					k			Ē
TP01_1.0-1.1_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_1.0-1.1_PartB 104/2009 X X ZIPLOCK BAG X GLASS JAR TP01_2.0-2.1_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_2.0-2.1_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_3.0-3.1_PartA 104/2009 X X GLASS JAR X GLASS JAR X TP01_3.0-3.1_PartA 104/2009 X X GLASS JAR X Z GLASS JAR X		TP01_0.5-0.6_PartB	1/04/2009	Х					x		ZIPLOCK BAG			X			·	·						-	<u> </u>	Ľ
TP01_10.1.1_PartB 104/2009 X X ZIPLOCK BAG X GLASS JAR TP01_2.0.2.1_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_2.0.2.1_PartB 104/2009 X X GLASS JAR X TP01_3.0.3.1_PartA 104/2009 X X GLASS JAR X TP01_3.0.3.1_PartA 104/2009 X X GLASS JAR X TP01_3.0.3.1_PartA 104/2009 X X GLASS JAR X TP01_4.0.4.1_PartA 104/2009 X X GLASS JAR X GLASS JAR TP01_4.0.4.1_PartB 104/2009 X X GLASS JAR X GLASS JAR X GLASS JAR X GLASS JAR X EM009022969 EM09022969 TP02_0.1.0.2_PartB 104/2009 X X GLASS JAR X EM09002969 EM09002969 X X GLASS JAR X Image: State Sta		TP01_1.0-1.1_PartA	1/04/2009	х	1						GLASS JAR									<u> </u> -			k	····		L
TP01_2.0-2 1_PartA 104/2009 X X dLASS JAR X ZIPLOCK BAG X Environmental Division Z TP01_3.0-3.1_PartB 104/2009 X X GLASS JAR X Environmental Division TP01_3.0-3.1_PartB 104/2009 X X GLASS JAR X Environmental Division TP01_4.0-4.1_PartA 104/2009 X X GLASS JAR X Environmental Division TP01_4.0-4.1_PartA 104/2009 X X GLASS JAR X Environmental Division TP01_0.0-2_PartA 104/2009 X X GLASS JAR X EM0902969 TP02_0.1-0.2_PartA 104/2009 X X GLASS JAR X EM0902969 TP02_0.5-0.6_PartA 104/2009 X X GLASS JAR X Elephone : + 61-3-8549 9600 TP02_0.10.1_PartA 104/2009 X X GLASS JAR X Image: PartA TP02_0.2.2.1_PartB 104/2009 X X GLASS JAR X Image: PartA TP02_0.2.0.2.1_PartB 104/2009 X X		TP01_1.0-1.1_PartB	1/04/2009	X	1				x		ZIPLOCK BAG	<u> </u>		X	-											٢
TP01_2.0.2.1_PartB 104/2009 X X 2 PLOCK BAG X Environmental Division Melbourne Z TP01_3.0.3.1_PartA 104/2009 X X GLASS JAR X Environmental Division Melbourne TP01_4.0-4.1_PartA 104/2009 X X GLASS JAR X Environmental Division Melbourne TP01_4.0-4.1_PartB 104/2009 X X GLASS JAR X EMO9022969 TP01_4.0-4.1_PartB 104/2009 X X GLASS JAR X EMO9022969 TP02_0.1-0.2_PartA 104/2009 X X GLASS JAR X EMO9022969 3 TP02_0.5-0.6_PartA 104/2009 X X GLASS JAR X Image: Control of Contr									· · · · · ·		GLASS JAR	i i							-			- [-		ŀ
Z TP01_3.0.3.1_PartA 10/4/2009 X X GLASS JAR X Environmental Division TP01_3.0.3.1_PartB 10/4/2009 X X ZIPLOCK BAG K Melbourne TP01_4.0.4.1_PartA 10/4/2009 X X GLASS JAR K Melbourne TP01_4.0.4.1_PartB 10/4/2009 X X GLASS JAR K Melbourne TP02_0.1.0.2_PartA 10/4/2009 X X GLASS JAR K Melbourne TP02_0.1.0.2_PartA 10/4/2009 X X GLASS JAR K Melbourne TP02_0.1.0.2_PartB 10/4/2009 X X GLASS JAR K More Melbourne TP02_0.5.0.6_PartA 10/4/2009 X X GLASS JAR K Image: Melbourne TP02_1.0.1.1_PartA 10/4/2009 X X GLASS JAR K Image: Melbourne TP02_1.0.1.1_PartB 10/4/2009 X X GLASS JAR K Image: Melbourne TP02_2.0.2.1_PartA 10/4/2009 X X GLASS JAR K Image: Melbourne											ZIPLOCK BAG			× ×	'	·ł_	I		1					1		ŀ
L TP01_3.0.3.1_PartB 1.04/2009 X X ZIPLOCK BAG X Melbourne TP01_4.0.4.1_PartA 1.04/2009 X X GLASS JAR Image: Constraint of the state of t	7	TP01 3.0-3.1 PartA		x							GLASS JAR	x			+	E	nviron	ment	al Div	ision				·		F
TP01_4.0.4.1_PartB 1/04/2009 X X ZIPLOCK BAG X EMO9022969 TP02_0.1-0.2_PartA 1/04/2009 X X GLASS JAR Image: Constraint of the second sec	<u> </u>				- ··									k		<u>~~</u> î	M	lelbou	irne	`				-		F
TP01_4.0-4.1_PartB 1/04/2009 X X ZIPLOCK BAG X EMO9022969 TP02_0.1-0.2_PartA 1/04/2009 X X GLASS JAR Image: Constraint of the second sec					-					\neg					+ (() h	Ś	ork C	rder	Ur-) -					F
TP02_0.1-0.2_PartA 104/2009 X I X GLASS JAR I															+	ĭ I	=1/1	nar	000	ดัล			$-\frac{1}{k}$	1		1
TP02_0.1-0.2_PartB 1/04/2009 X X ZIPLOCK BAG Image: Constraint of the constraint of th					+					-		· · · ·		l l'	+	<u>6.</u>	-141	030	23	03	-	Î-Î				h
3 TP02_0.5-0.6_PartA 1/04/2009 X X GLASS JAR X Image: Constraint of the state	· · · · · · · · · · · · · · · · · · ·									÷.				┼╌┟──	+					T E E E E E E E E						Γ
TP02_0.5-0.6_PartB 1/04/2009 X X ZIPLOCK BAG X Telephone : + 61·3·8549 9600 TP02_1.0-1.1_PartA 1/04/2009 X X GLASS JAR Image: Constraint of the second	2											×			+							- Î				Γ
TP02_1.0-1.1_PartA 1/04/2009 X X GLASS JAR C Telephone : + 61-3-8549 9600 TP02_1.0-1.1_PartB 1/04/2009 X X ZIPLOCK BAG K Telephone : + 61-3-8549 9600 TP02_2.0-2.1_PartA 1/04/2009 X X GLASS JAR K Image: Comparison of the	·····		·}									<u>_</u>									·			-		r
TP02_1.0-1.1_PartB 1/04/2009 X X ZIPLOCK BAG K Image: Constraint of the property of t							ļ							⊢ ├ ─								- <u> </u> -[-		$\left\{ - \right\}$	Γ
TP02_2.0-2.1_PartA 1/04/2009 X X GLASS JAR Image: Constraint of the																Tele	phone :	+ 61-:	8-8549	9600	+			-	$\left \right $	-
TP02_2.0-2.1_PartB 1/04/2009 X X ZIPLOCK BAG X X Image: Constraint of the															I	5	I		1	. · ·		-ĵ		<u></u>		Ē
Lf TP02_3 0-3.1_PartA 1/04/2009 X X GLASS JAR X X Image: Constraint of the state of the						L						· · · · · · · · · · · · · · · · · · ·								<u>├</u> ───- <u>├</u> -					┝──┤	r
TP02_3.0-3.1_PartB 1/04/2009 X X ZIPLOCK BAG X L <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<>	LL-				+									┝─ि	×					├				+	<u> </u>	r
TP03_0.1-0.2_PartA 1/04/2009 X X GLASS JAR Ø	-1				+										+				+	$\left \right $						Г
					-									<u> </u>		્ હવે				╞───┝		Î	+		┝╍╍╸┠	i
																<u>p</u>)							+		 	ſ
TP03_0.5-0.6_PartA 1/04/2009 X X GLASS JAR			<u> </u>											╎╴╏──	+				+	┟───┼╸		<u> </u>	 [<u> </u>	٣
												. ,								┝───┝		+	- [-	-	$ \vdash $	r
	~		<u>}</u> }									~		<u> −</u> <u> </u> −-	-				+		+			+		Г
5 TP03_1.0-1.1_PartA 1/04/2009 X X GLASS JAR X Image: Constraint of the state of the	<u>ر</u>							<u> </u>										<u> </u>		-			<u> </u>		├	<u>_</u>

1	TP03_2.0-2.1_PartA	1/04/2009	Х	T		Ţ	Y	GLASS JAR		1				T		1	T	7	1	1		<u>î.</u>		···· 1 · ··	
	TP03_2.0-2.1_PartB	1/04/2009	x		 		<u>х</u>										<u> </u>			[_[_
	TP03_3.0-3.1_PartA	1/04/2009			 		X	ZIPLOCK BA	- · · ·		- ř						<u> </u>		ļ	ļ	×	X			1
	TP03_3.0-3.1_PartB	1/04/2009	X X	<u> </u>	 <u> </u>		X	GLASS JAI							_							×			
	TP03_4.0_4.1_PartA		· · · · · · · · · · · · · · · · · · ·		 		X	ZIPLOCK BA							_						X	X			
6		1/04/2009	X		 		<u>x</u>	GLASS JAI					x									×			
	TP03_4.0_4.1_PartB	1/04/2009	X		 		X	ZIPLOCK BA													X				
	TP04_0.1-0.2_PartA	1/04/2009	X		 		<u>x</u>	GLASS JAP									<u> </u>	ļ				X			
0-	TP04_0.1-0.2_PartB	1/04/2009	X		 		×	ZIPLOCK BA		ļ						_					X				\perp
67	TP04_0.5-0.6_PartA	1/04/2009	X		 <u> </u>		X	GLASS JAF	•••{	ļ							_	ļ				. X			
	TP04_0.5-0.6_PartB	1/04/2009	X	ļļ	ļ		<u>x</u>	ZIPLOCK BA			_ _ ×						-				×	×.			
	TP04_1.0-1.1_PartA	1/04/2009	X		 ļ	ļ	X	GLASS JAF		ļ										[]		×			
	TP04_1.0-1.1_PartB	1/04/2009	X	<u> </u>	 		X	ZIPLOCK BA	3 <u>}</u>		K					_		<u> </u>			X	×			
	TP04_2.0-2.1_PartA	1/04/2009	X		 		_ X	GLASS JAP									_					×			
i	TP04_2.0-2.1_PartB	1/04/2009	X	ļ	 ļ		X	ZIPLOCK BA	3		k					_	<u> </u>	ļ			×	×			
	TP04_3.0-3.1_PartA	1/04/2009	X	ļ	 <u> </u>		<u>x</u>	GLASS JAF	, ,													×			
	TP04_3.0-3.1_PartB	1/04/2009	X		 <u> </u>		X	ZIPLOCK BA	3		K										X	*			
8	TP04_4.0-4.1_PartA	1/04/2009	X				x	GLASS JAF					x					<u> </u>				×			
	TP04_4.0-4.1_PartB	1/04/2009	<u>X</u>				_X	ZIPLOCK BA	3		k										×_	¥			
9	TP05_0.1-0.2_PartA	1/04/2009	X	1			x	GLASS JAF	X													¥			
	TP05_0.1-0.2_PartB	1/04/2009	Х				_x	ZIPLOCK BA	Э												-×-	×			
10	TP05_0.5-0.6_PartA	1/04/2009	X				x	GLASS JAF					x				-					×			
	TP05_0.5-0.6_PartB	1/04/2009	Х				x	ZIPLOCK BA	3		k										×	X			Τ
	TP05_1.0-1.1_PartA	1/04/2009	X				Х	GLASS JAF	<u> </u>													×			
	TP05_1.0-1.1_PartB	1/04/2009	X				x	ZIPLOCK BA	3		×						1				X	×			T
	TP05_2.0-2.1_PartA	1/04/2009	X				x	GLASS JAR														×			\top
	TP05_2.0-2.1_PartB	1/04/2009	X				X	ZIPLOCK BA	3		×						1				×	×			
	TP05_3.0-3.1_PartA	1/04/2009	X				x	GLASS JAR	1							1	1					×			
	TP05_3.0-3.1_PartB	1/04/2009	X				x	ZIPLOCK BA	э '	1	X										×	×			1
	TP05_4.0-4.1_PartA	1/04/2009	x				x	GLASS JAR		1							1					*			T
	TP05_4.0-4.1_PartB	1/04/2009	х				X	ZIPLOCK BA	3		×							1			×	×			1
	TP05_5.0-5.1_PartA	1/04/2009	X		 <u> </u>		x	GLASS JAR	1	1							1					×			1
	TP05_5.0-5.1_PartB	1/04/2009	X				x	ZIPLÓCK BA	3	1	X					-	<u> </u>				×	- x			+
11	TP06_0.1_0.2_PartA	1/04/2009	X				x	GLASS JAR	X	1							· ·					,			+
	TP06_0.1-0.2_PartB	1/04/2009	X				x	ZIPLOCK BA	ə												X	×			-
		1/04/2009	Х	-	 		x	GLASS JAR									1					×			
	TP06_0.5-0.6_PartB	1/04/2009	x				x	ZIPLOCK BA	3	1	×						1				X	×			+
12	TP06_1.0-1.1_PartA	1/04/2009	X				x	GLASS JAR					x		-		1	<u> </u>				×	-		+
	TP06_1.0-1.1_PartB	1/04/2009	x		 		x	ZIPLOCK BA	; ;		×					1	1				×				╈
	TP06_2.0-2.1_PartA	1/04/2009	x	-		-	x	GLASS JAR	- <u> </u>		╧	+				-	1					×	-		+
	TP06_2.0-2.1_PartB	1/04/2009	X	<u> </u>	 		x	ZIPLOCK BA		1	- <u> </u>	+					1				╈	×			+
	TP06_3.0-3.1_PartA	1/04/2009	X		 	r	x	GLASS JAR			+	_					1				-	- <u>1</u>			+
		1/04/2009	X	<u>├</u>			x	ZIPLOCK BA	+	1	╈			+	-	1		<u> </u>			X	- T			
	TP06_4.0-4.1_PartA	1/04/2009	x				x	GLASS JAR							_						- Î -				╋

Ra(A4) 01/04/09

20-230

								<u>i</u>	······	a	· · · · · ·	 <u> </u>	· · · · · · · · · · · · · · · · · · ·	 			A		 ,
	TP06_4.0-4.1_PartB	1/04/2009	X		 .	X	ZIPLOCK BAG			R.		 				×	X		
	TP06_5.0-5.1_PartA	1/04/2009	X			X	GLASS JAR		ļ	~		 					¥		
	TP06_5.0-5.1_PartB	1/04/2009	Х			x	ZIPLOCK BAG			×.						*	*		
	TP07_0.1-0.2_PartA	1/04/2009	X			х	GLASS JAR										*		
	TP07_0.1-0.2_PartB	1/04/2009	X			X	ZIPLOCK BAG	· · · · · ·								X	X		
13	TP07_0.5-0.6_PartA	1/04/2009	X			x	GLASS JAR	X									х		
	TP07_0.5-0.6_PartB	1/04/2009	Х	1		X	ZIPLOCK BAG	1		X						×	X		
	TP07_1.0-1.1_PartA	1/04/2009	X			X	GLASS JAR	1									x		
	TP07_1.0-1.1_PartB	1/04/2009	Х			X	ZIPLOCK BAG			¥						×	X		
14	TP07_2.0-2.1_PartA	1/04/2009	Х			X	GLASS JAR	1			X						X	-	
1	TP07_2.0-2.1_PartB	1/04/2009	Х			X	ZIPLOCK BAG	:		¥	<u> </u>					X	X		
	TP07_3.0-3.1_PartA	1/04/2009	X			X	GLASS JAR										X		\square
	TP07_3.0-3.1_PartB	1/04/2009	X			X	ZIPLOCK BAG			¥						*	X		
	TP07_4.0-4.1_PartA	1/04/2009	X			X	GLASS JAR	1									X		
	TP07_4.0-4.1_PartB	1/04/2009	x		 	X	ZIPLOCK BAG	,		×						X	X		
	TP07_5.0-5.1_PartA	1/04/2009	x		 h	X	GLASS JAR					 					X		
	TP07_5.0-5.1_PartB	1/04/2009	X		 	X	ZIPLOCK BAG	1		X				-		*	X		\square
15	DUP01_PartA	1/04/2009	x			X	GLASS JAR	X							Î		X		
	DUP01_PartB	1/04/2009	X			x	ZIPLOCK BAG									X	X		
	·····				 														
				•	 				2			 Lab	Report No	 ·········	l	Esky II	כ		
Relinguished by:	PHIL RILEY	Signed:	· J. An	and the second se	 Date:	1/04/20	09 Relinquished	by:					Signed:	 				Date:	
Received by:		Signed:			 Date:		Received by:					 	Signed:					Date:	

 $\frac{Date: 1/04/2009 | Received by:}{Received by:}$ Ru(AU) = 0 | (04 / 09.) 3.20M 2=-23.0C

e S

(ALS)

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: EM0902969	Page	: 1 of 16
Client	: FULTON HOGAN	Laboratory	: Environmental Division Melbourne
Contact	: MR PHIL RILEY	Contact	: Steven McGrath
Address	: 10-30 DANA COURT DANDENONG VIC 3175	Address	: 4 Westall Rd Springvale VIC Australia 3171
E-mail	: phil.riley@fultonhogan.com.au	E-mail	: steven.mcgrath@alsenviro.com
Telephone	:	Telephone	: +61-3-8549 9600
Facsimile	:	Facsimile	: +61-3-8549 9601
Project	: PD4008 - Kelletts Road Drain Wetland	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 01-APR-2009
Sampler	:	Issue Date	: 08-APR-2009
Site	:		
		No. of samples received	: 15
Quote number	: ME/363/08	No. of samples analysed	: 15

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Environmental Division Melbourne Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- Fluoride conducted by ALS Newcastle, NATA accreditation no. 825, site no 1656
- SPLIT BATCH OF EM0902848

Sub-Matrix: SOIL		Clie	ent sample ID	TP01_0.5-0.6_PART A	TP01_3.0-3.1_PART A	TP02_0.5-0.6_PART A	TP02_3.0-3.1_PART A	TP03_1.0-1.1_PART A
	Cl	ient sampli	ng date / time	01-APR-2009 15:00				
Compound	CAS Number	LOR	Unit	EM0902969-001	EM0902969-002	EM0902969-003	EM0902969-004	EM0902969-005
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)		1.0	%	11.2	17.7	25.3	16.6	30.0
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Copper	7440-50-8	5	mg/kg	7	9	8	5	9
Lead	7439-92-1	5	mg/kg	10	10	11	7	10
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	5	8	4	5	9
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Tin	7440-31-5	5	mg/kg		<5	<5		<5
Zinc	7440-66-6	5	mg/kg	<5	11	5	7	8
EG035T: Total Recoverable Mercur	y by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EG048: Hexavalent Chromium (Alka	aline Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EK026G: Total Cyanide By Discrete	Analyser							
Total Cyanide	57-12-5	1	mg/kg		<1	<1		<1
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg		90	60		100
EP066: Polychlorinated Biphenyls (PCB)							
Total Polychlorinated biphenyls		0.10	mg/kg		<0.10	<0.10		<0.10
EP074A: Monocyclic Aromatic Hydr								
Benzene	71-43-2	0.2	mg/kg		<0.2	<0.2		<0.2
Toluene	108-88-3	0.5	mg/kg		<0.5	<0.5		<0.5
Ethylbenzene	100-41-4	0.5	mg/kg		<0.5	<0.5		<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg		<0.5	<0.5		<0.5
Styrene	100-42-5	0.5	mg/kg		<0.5	<0.5		<0.5
ortho-Xylene	95-47-6	0.5	mg/kg		<0.5	<0.5		<0.5
^ Sum of monocyclic aromatic		0.2	mg/kg		<0.2	<0.2		<0.2
hydrocarbons								
EP074I: Volatile Halogenated Comp	ounds							
Vinyl chloride	75-01-4	0.02	mg/kg		<0.02	<0.02		<0.02
1.1-Dichloroethene	75-35-4	0.01	mg/kg		<0.01	<0.01		<0.01
Methylene chloride	75-09-2	0.4	mg/kg		<0.4	<0.4		<0.4
trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg		<0.02	<0.02		<0.02
cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg		<0.01	<0.01		<0.01

Sub-Matrix: SOIL		Clie	ent sample ID	TP01_0.5-0.6_PART A	TP01_3.0-3.1_PART A	TP02_0.5-0.6_PART A	TP02_3.0-3.1_PART A	TP03_1.0-1.1_PART A
	Cl	ient sampli	ng date / time	01-APR-2009 15:00				
Compound	CAS Number	LOR	Unit	EM0902969-001	EM0902969-002	EM0902969-003	EM0902969-004	EM0902969-005
EP074I: Volatile Halogenated Compou	Inds - Continued							
Chloroform	67-66-3	0.02	mg/kg		<0.02	<0.02		<0.02
1.1.1-Trichloroethane	71-55-6	0.01	mg/kg		<0.01	<0.01		<0.01
Carbon Tetrachloride	56-23-5	0.01	mg/kg		<0.01	<0.01		<0.01
1.2-Dichloroethane	107-06-2	0.02	mg/kg		<0.02	<0.02		<0.02
Trichloroethene	79-01-6	0.02	mg/kg		<0.02	<0.02		<0.02
1.1.2-Trichloroethane	79-00-5	0.04	mg/kg		<0.04	<0.04		<0.04
Tetrachloroethene	127-18-4	0.02	mg/kg		<0.02	<0.02		<0.02
1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg		<0.01	<0.01		<0.01
1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg		<0.02	<0.02		<0.02
Hexachlorobutadiene	87-68-3	0.02	mg/kg		<0.02	<0.02		<0.02
Chlorobenzene	108-90-7	0.02	mg/kg		<0.02	<0.02		<0.02
1.4-Dichlorobenzene	106-46-7	0.02	mg/kg		<0.02	<0.02		<0.02
1.2-Dichlorobenzene	95-50-1	0.02	mg/kg		<0.02	<0.02		<0.02
1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg		<0.01	<0.01		<0.01
^ Sum of volatile chlorinated		0.01	mg/kg		<0.01	<0.01		<0.01
hydrocarbons								
^ Sum of other chlorinated hydrocarbons		0.01	mg/kg		<0.01	<0.01		<0.01
(VIC EPA 448.3)								
EP075A: Phenolic Compounds (Halog	jenated)							
2-Chlorophenol	95-57-8	0.03	mg/kg		<0.03	<0.03		<0.03
2.4-Dichlorophenol	120-83-2	0.03	mg/kg		<0.03	<0.03		<0.03
2.6-Dichlorophenol	87-65-0	0.03	mg/kg		<0.03	<0.03		<0.03
4-Chloro-3-Methylphenol	59-50-7	0.03	mg/kg		<0.03	<0.03		<0.03
2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg		<0.05	<0.05		<0.05
2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg		<0.05	<0.05		<0.05
2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg		<0.03	<0.03		<0.03
2.3.4.5 &	4901-51-3/58-90-2	0.05	mg/kg		<0.05	<0.05		<0.05
2.3.4.6-Tetrachlorophenol								
Pentachlorophenol	87-86-5	0.2	mg/kg		<0.2	<0.2		<0.2
^ Sum of Phenols (halogenated)		0.03	mg/kg		<0.03	<0.03		<0.03
EP075A: Phenolic Compounds (Non-h	nalogenated)							
Phenol	108-95-2	1	mg/kg		<1	<1		<1
2-Methylphenol	95-48-7	1	mg/kg		<1	<1		<1
3- & 4-Methylphenol	1319-77-3	1	mg/kg		<1	<1		<1
2-Nitrophenol	88-75-5	1	mg/kg		<1	<1		<1
2.4-Dimethylphenol	105-67-9	1	mg/kg		<1	<1		<1
2.4-Dinitrophenol	51-28-5	5	mg/kg		<5	<5		<5
4-Nitrophenol	100-02-7	5	mg/kg		<5	<5		<5

Sub-Matrix: SOIL		Clie	ent sample ID	TP01_0.5-0.6_PART A	TP01_3.0-3.1_PART A	TP02_0.5-0.6_PART A	TP02_3.0-3.1_PART A	TP03_1.0-1.1_PART A
	Cl	ient sampli	ng date / time	01-APR-2009 15:00				
Compound	CAS Number	LOR	Unit	EM0902969-001	EM0902969-002	EM0902969-003	EM0902969-004	EM0902969-005
EP075A: Phenolic Compounds (Non-h	halogenated) - Conti	nued						
2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg		<5	<5		<5
Dinoseb	88-85-7	5	mg/kg		<5	<5		<5
2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg		<5	<5		<5
^ Sum of Phenols (non-halogenated)		1	mg/kg		<1	<1		<1
EP075B: Polynuclear Aromatic Hydro	carbons							
Naphthalene	91-20-3	0.5	mg/kg		<0.5	<0.5		<0.5
Acenaphthene	83-32-9	0.5	mg/kg		<0.5	<0.5		<0.5
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5	<0.5		<0.5
Fluorene	86-73-7	0.5	mg/kg		<0.5	<0.5		<0.5
Phenanthrene	85-01-8	0.5	mg/kg		<0.5	<0.5		<0.5
Anthracene	120-12-7	0.5	mg/kg		<0.5	<0.5		<0.5
Fluoranthene	206-44-0	0.5	mg/kg		<0.5	<0.5		<0.5
Pyrene	129-00-0	0.5	mg/kg		<0.5	<0.5		<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5	<0.5		<0.5
Chrysene	218-01-9	0.5	mg/kg		<0.5	<0.5		<0.5
Benzo(b) &	205-99-2 207-08-9	0.5	mg/kg		<0.5	<0.5		<0.5
Benzo(k)fluoranthene								
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5	<0.5		<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5	<0.5		<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5	<0.5		<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5	<0.5		<0.5
^ Sum of polycyclic aromatic		0.5	mg/kg		<0.5	<0.5		<0.5
hydrocarbons								
EP075I: Organochlorine Pesticides								
alpha-BHC	319-84-6	0.03	mg/kg		<0.03	<0.03		<0.03
Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg		<0.03	<0.03		<0.03
beta-BHC	319-85-7	0.03	mg/kg		<0.03	<0.03		<0.03
gamma-BHC	58-89-9	0.03	mg/kg		<0.03	<0.03		<0.03
delta-BHC	319-86-8	0.03	mg/kg		<0.03	<0.03		<0.03
Heptachlor	76-44-8	0.03	mg/kg		<0.03	<0.03		<0.03
Aldrin	309-00-2	0.03	mg/kg		<0.03	<0.03		<0.03
Heptachlor epoxide	1024-57-3	0.03	mg/kg		<0.03	<0.03		<0.03
cis-Chlordane	5103-71-9	0.03	mg/kg		<0.03	<0.03		<0.03
trans-Chlordane	5103-74-2	0.03	mg/kg		<0.03	<0.03		<0.03
Endosulfan 1	959-98-8	0.03	mg/kg		<0.03	<0.03		<0.03
4.4`-DDE	72-55-9	0.05	mg/kg		<0.05	<0.05		<0.05
Dieldrin	60-57-1	0.03	mg/kg		<0.03	<0.03		<0.03
Endrin aldehyde	7421-93-4	0.03	mg/kg		<0.03	<0.03		<0.03

Sub-Matrix: SOIL		Clie	ent sample ID	TP01_0.5-0.6_PART A	TP01_3.0-3.1_PART A	TP02_0.5-0.6_PART A	TP02_3.0-3.1_PART A	TP03_1.0-1.1_PART A
	Cl	lient sampli	ng date / time	01-APR-2009 15:00				
Compound	CAS Number	LOR	Unit	EM0902969-001	EM0902969-002	EM0902969-003	EM0902969-004	EM0902969-005
EP075I: Organochlorine Pesticides -	Continued							
Endrin	72-20-8	0.03	mg/kg		<0.03	<0.03		<0.03
Endosulfan 2	33213-65-9	0.03	mg/kg		<0.03	<0.03		<0.03
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05	<0.05		<0.05
Endosulfan sulfate	1031-07-8	0.03	mg/kg		<0.03	<0.03		<0.03
4.4`-DDT	50-29-3	0.05	mg/kg		<0.05	<0.05		<0.05
Methoxychlor	72-43-5	0.03	mg/kg		<0.03	<0.03		<0.03
^ Sum of organochlorine pesticides		0.03	mg/kg		<0.03	<0.03		<0.03
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.03	mg/kg		<0.03	<0.03		<0.03
^ Sum of DDD + DDE + DDT		0.05	mg/kg		<0.05	<0.05		<0.05
^ Chlordane	57-74-9	0.03	mg/kg		<0.03	<0.03		<0.03
^ Sum of other organochlorine		0.03	mg/kg		<0.03	<0.03		<0.03
pesticides								
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		10	mg/kg		<10	<10		<10
C10 - C14 Fraction		50	mg/kg		<50	<50		<50
C15 - C28 Fraction		100	mg/kg		<100	<100		<100
C29 - C36 Fraction		100	mg/kg		<100	<100		<100
^ C10 - C36 Fraction (sum)		50	mg/kg		<50	<50		<50
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%		78.2	81.2		75.9
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%		91.0	95.6		73.2
Toluene-D8	2037-26-5	0.1	%		92.0	96.6		75.0
4-Bromofluorobenzene	460-00-4	0.1	%		101	104		87.3
EP075S: Acid Extractable Surrogates								
2-Fluorophenol	367-12-4	0.1	%		94.1	95.2		89.8
Phenol-d6	13127-88-3	0.1	%		77.2	80.5		75.0
2-Chlorophenol-D4	93951-73-6	0.1	%		76.7	78.6		73.5
2.4.6-Tribromophenol	118-79-6	0.1	%		76.7	87.2		76.4
EP075T: Base/Neutral Extractable Su	rrogates							
Nitrobenzene-D5	4165-60-0	0.1	%		63.1	63.2		59.1
1.2-Dichlorobenzene-D4	2199-69-1	0.1	%		60.0	59.8		55.7
2-Fluorobiphenyl	321-60-8	0.1	%		60.6	64.3		57.6
Anthracene-d10	1719-06-8	0.1	%		72.2	72.6		69.6
4-Terphenyl-d14	1718-51-0	0.1	%		65.4	65.0		61.8

Sub-Matrix: SOIL		Clie	ent sample ID	TP03_4.0-4.1_PART A	TP04_0.5-0.6_PART A	TP04_4.0-4.1_PART A	TP05_0.1-0.2_PART A	TP05_0.5-0.6_PART A
	Cl	ient sampli	ng date / time	01-APR-2009 15:00				
Compound	CAS Number	LOR	Unit	EM0902969-006	EM0902969-007	EM0902969-008	EM0902969-009	EM0902969-010
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)		1.0	%	19.1	11.9	17.9	11.3	12.3
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Copper	7440-50-8	5	mg/kg	10	6	6	8	6
Lead	7439-92-1	5	mg/kg	11	10	6	19	9
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	7	4	5	4	3
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Tin	7440-31-5	5	mg/kg		<5		<5	
Zinc	7440-66-6	5	mg/kg	12	<5	13	15	<5
EG035T: Total Recoverable Mercury	y by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EG048: Hexavalent Chromium (Alka	line Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EK026G: Total Cyanide By Discrete	Analyser							
Total Cyanide	57-12-5	1	mg/kg		<1		1	
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg		50		90	
EP066: Polychlorinated Biphenyls (F								
Total Polychlorinated biphenyls		0.10	mg/kg		<0.10		<0.10	
EP074A: Monocyclic Aromatic Hydro								
Benzene	71-43-2	0.2	mg/kg		<0.2		<0.2	
Toluene	108-88-3	0.5	mg/kg		<0.5		<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg		<0.5		<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg		<0.5		<0.5	
Styrene	100-42-5	0.5	mg/kg		<0.5		<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg		<0.5		<0.5	
^ Sum of monocyclic aromatic		0.2	mg/kg		<0.2		<0.2	
hydrocarbons								
EP074I: Volatile Halogenated Compo	ounds							
Vinyl chloride	75-01-4	0.02	mg/kg		<0.02		<0.02	
1.1-Dichloroethene	75-35-4	0.01	mg/kg		<0.01		<0.01	
Methylene chloride	75-09-2	0.4	mg/kg		<0.4		<0.4	
trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg		<0.02		<0.02	
cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg		<0.01		<0.01	

Sub-Matrix: SOIL		Clie	ent sample ID	TP03_4.0-4.1_PART A	TP04_0.5-0.6_PART A	TP04_4.0-4.1_PART A	TP05_0.1-0.2_PART A	TP05_0.5-0.6_PART A
	Cl	ent sampli	ng date / time	01-APR-2009 15:00				
Compound	CAS Number	LOR	Unit	EM0902969-006	EM0902969-007	EM0902969-008	EM0902969-009	EM0902969-010
EP074I: Volatile Halogenated Compou	unds - Continued							
Chloroform	67-66-3	0.02	mg/kg		<0.02		<0.02	
1.1.1-Trichloroethane	71-55-6	0.01	mg/kg		<0.01		<0.01	
Carbon Tetrachloride	56-23-5	0.01	mg/kg		<0.01		<0.01	
1.2-Dichloroethane	107-06-2	0.02	mg/kg		<0.02		<0.02	
Trichloroethene	79-01-6	0.02	mg/kg		<0.02		<0.02	
1.1.2-Trichloroethane	79-00-5	0.04	mg/kg		<0.04		<0.04	
Tetrachloroethene	127-18-4	0.02	mg/kg		<0.02		<0.02	
1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg		<0.01		<0.01	
1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg		<0.02		<0.02	
Hexachlorobutadiene	87-68-3	0.02	mg/kg		<0.02		<0.02	
Chlorobenzene	108-90-7	0.02	mg/kg		<0.02		<0.02	
1.4-Dichlorobenzene	106-46-7	0.02	mg/kg		<0.02		<0.02	
1.2-Dichlorobenzene	95-50-1	0.02	mg/kg		<0.02		<0.02	
1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg		<0.01		<0.01	
^ Sum of volatile chlorinated hydrocarbons		0.01	mg/kg		<0.01		<0.01	
^ Sum of other chlorinated hydrocarbons		0.01	mg/kg		<0.01		<0.01	
(VIC EPA 448.3)								
EP075A: Phenolic Compounds (Halog								
2-Chlorophenol	95-57-8	0.03	mg/kg		<0.03		<0.03	
2.4-Dichlorophenol	120-83-2	0.03	mg/kg		<0.03		<0.03	
2.6-Dichlorophenol	87-65-0	0.03	mg/kg		<0.03		<0.03	
4-Chloro-3-Methylphenol	59-50-7	0.03	mg/kg		<0.03		<0.03	
2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg		<0.05		<0.05	
2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg		<0.05		<0.05	
2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg		<0.03		<0.03	
2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/58-90-2	0.05	mg/kg		<0.05		<0.05	
Pentachlorophenol	87-86-5	0.2	mg/kg		<0.2		<0.2	
^ Sum of Phenois (halogenated)		0.03	mg/kg		<0.03		<0.03	
EP075A: Phenolic Compounds (Non-	halogenated)							
Phenol	108-95-2	1	mg/kg		<1		<1	
2-Methylphenol	95-48-7	1	mg/kg		<1		<1	
3- & 4-Methylphenol	1319-77-3	1	mg/kg		<1		<1	
2-Nitrophenol	88-75-5	1	mg/kg		<1		<1	
2.4-Dimethylphenol	105-67-9	1	mg/kg		<1		<1	
2.4-Dinitrophenol	51-28-5	5	mg/kg		<5		<5	
4-Nitrophenol	100-02-7	5	mg/kg		<5		<5	

Characterization0+APR-2009 (b)0+APR-2009 (b)0+A	Sub-Matrix: SOIL		Clie	ent sample ID	TP03_4.0-4.1_PART A	TP04_0.5-0.6_PART A	TP04_4.0-4.1_PART A	TP05_0.1-0.2_PART A	TP05_0.5-0.6_PART A
Campandia Campandia Campandia Campandia Campandia Campandia Campandia 244dity/4.4 dinitroptenol 80714510 5 mg/kq 45 46 24cyclobicy/1.4.5 dinitroptenol 131:49.5 5 mg/kq 45 46 25.9 colorizational 131:49.5 5 mg/kq 45 47 25.9 colorizational 131:49.5 5 mg/kq 475 47.5 45.0 of Phenolic Conchalogenation 63:28.9 0.5 mg/kq 47.5 47.5 40.5 mg/kq 47.5 47.5 47.5 Fluorene 68:7.1 6.5 mg/kq 47.5 47.5 Prese 129:40.9 0.5 mg/kq 47.5 47.5		Cli	ent sampli	ng date / time	01-APR-2009 15:00				
24MaryA4-bintrophenel807:14.98797<	Compound	CAS Number	LOR	Unit	EM0902969-006	EM0902969-007	EM0902969-008	EM0902969-009	EM0902969-010
24MaryA4-bintrophenel807:14.98797<	EP075A: Phenolic Compounds (Non	-halogenated) - Conti	nued						
2-Cyclosery1-4-Dointrophenol13:e95mg/kg	2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg		<5		<5	
Sum of Penols (non-slagenated) 1 ng/kg	Dinoseb	88-85-7	5	mg/kg		<5		<5	
Bornstein Point Poin	2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg		<5		<5	
Naphtanon91-20.30.5mg/q0.50.50.05Acenaphthylene208.6480.5mg/q0.5	^ Sum of Phenols (non-halogenated)		1	mg/kg		<1		<1	
Acanaphthylene93.329.059m/sq9.0-9.059.0-9.059.0-9.059.0-9.059.0-9.059.0-9.0	EP075B: Polynuclear Aromatic Hydr	ocarbons							
Acata phylene 208 eps 0.5 mgkg 40.5 40.5 Fluerene 86.73.7 0.5 mgkg 40.5 <th>Naphthalene</th> <th>91-20-3</th> <th>0.5</th> <th>mg/kg</th> <th></th> <th><0.5</th> <th></th> <th><0.5</th> <th></th>	Naphthalene	91-20-3	0.5	mg/kg		<0.5		<0.5	
Fluore 88-73 0.5 mg/kg 0.5 0.5 Phenanthree 86.014 0.5 mg/kg 0.5 0.5 Althracene 120.127 0.5 mg/kg 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Acenaphthene	83-32-9	0.5	mg/kg		<0.5		<0.5	
Phenantrene 65.01 mg/kg <0.5	Acenaphthylene	208-96-8	0.5	mg/kg		<0.5		<0.5	
Anthracene120.1270.55mg/kg<0.55	Fluorene	86-73-7	0.5	mg/kg		<0.5		<0.5	
Fluorathene $0.6.$	Phenanthrene	85-01-8	0.5	1					
Pyrene 129.000 0.5 mg/kg <0.5	Anthracene	120-12-7	0.5	mg/kg		<0.5		<0.5	
Banz(a) anthracene 56.55.3 0.5 mg/kg 40.5 40.5 Chrysene 216.01.9 0.5 mg/kg 40.5 40.5 Benzo(b) 205.99.207.04.8 0.5 mg/kg 40.5 40.5 Benzo(b) (fluoranthene 40.5 40.5 40.5 Idean(1.2.3.2)grone 50.5 mg/kg 40.5 40.5 Benzo(b,Li)perylene 50.5 mg/kg 40.5 40.5 Benzo(b,Li)perylene 50.5 mg/kg 40.5 40.5 Sum of objycic aromatic 40.5 40.5	Fluoranthene	206-44-0	0.5	mg/kg		<0.5		<0.5	
Chrysene 218-01-9 0.5 mg/kg <0.5	Pyrene	129-00-0	0.5	mg/kg		<0.5		<0.5	
Benzo(b) & 205-99-207-08 0.5 mg/kg <0.5	Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5		<0.5	
Benzolk/Itoranthene Indiana Indiana <th>Chrysene</th> <th>218-01-9</th> <th>0.5</th> <th>mg/kg</th> <th></th> <th><0.5</th> <th></th> <th><0.5</th> <th></th>	Chrysene	218-01-9	0.5	mg/kg		<0.5		<0.5	
Benzo(a)pyrene 50.32.8 0.5 mg/kg <0.5	Benzo(b) &	205-99-2 207-08-9	0.5	mg/kg		<0.5		<0.5	
Inden(1.2.3.cd)pyrene 193-39-5 0.5 mg/kg <0.5	Benzo(k)fluoranthene								
Diben(a,h)anthracene 53.70.3 0.5 mg/kg 40.5 40.5 Benzo(g,h.i)perylene 191-24.2 0.5 mg/kg 40.5 40.5 ^ sum of polycycic aromatic hydrocarbons 0.5 mg/kg 40.5 40.5 alpha-BHC 319-84-6 0.03 mg/kg 40.03 40.03 Beta-BHC 319-84-7 0.03 mg/kg 40.03 40.03 gamma-BHC 58-8-9 0.3 mg/kg 40.03 40.03 delta-BHC 319-86.7 0.3 mg/kg 40.03 40.03 delta-BHC 319-86.8 0.03 mg/kg 40.03 40.03 delta-BHC 319-86.8 0.03 mg/kg 40.03		50-32-8							
Benzo(g.h.)perylene 191-24-2 0.5 mg/kg	Indeno(1.2.3.cd)pyrene	193-39-5		mg/kg					
^ Sum of polycyclic aromatic hydrocarbons0.5mg/kg<0.5				mg/kg					
hytocarbons of all all all all all all all all all al	Benzo(g.h.i)perylene	191-24-2							
EP0751: Organochlorine Pesticides alpha-BHC 319-84-6 0.03 mg/kg <0.03 <0.03 Hexachlorobenzene (HCB) 118-74-1 0.03 mg/kg <0.03 <0.03 beta-BHC 319-85-7 0.03 mg/kg <0.03 <0.03 gamma-BHC 58-89-9 0.03 mg/kg <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03			0.5	mg/kg		<0.5		<0.5	
alpha-BHC319-84-0.03mg/kg<0.03	hydrocarbons								
Hexach/orobenzene (HCB) 18.74-1 0.03 mg/kg <-0.03									
beta-BHC 319-85-7 0.03 mg/kg <-0.03	alpha-BHC	319-84-6	0.03	mg/kg		<0.03		<0.03	
gamma-BHC 58-89 0.03 mg/kg -0.03 -0.03 delta-BHC 319-86-8 0.03 mg/kg -0.03 -0.03 Heptachlor 76-44-8 0.03 mg/kg -0.03 -0.03 Aldrin 309-00-2 0.03 mg/kg		118-74-1		mg/kg					
delta-BHC 319-86-8 0.03 mg/kg <-0.03		319-85-7							
Heptachlor 76-44-8 0.03 mg/kg <-0.03	-	58-89-9		mg/kg					
Aldrin 309-00-2 0.03 mg/kg <-0.03		319-86-8							
Heptachlor epoxide 1024-57-3 0.03 mg/kg <-0.03	-	76-44-8							
cis-Chlordane 5103-71-9 0.03 mg/kg <0.03									
trans-Chlordane 5103-74-2 0.03 mg/kg <0.03									
Endosulfan 1 959-98-8 0.03 mg/kg <0.03									
4.4'-DDE 72-55-9 0.05 mg/kg <0.05									
Dieldrin 60-57-1 0.03 mg/kg <0.03									
Endrin aldehyde 7421-93-4 0.03 mg/kg <0.03 <0.03									
	Endrin aldehyde	7421-93-4	0.03	mg/kg		<0.03		<0.03	

Sub-Matrix: SOIL		Clie	ent sample ID	TP03_4.0-4.1_PART A	TP04_0.5-0.6_PART A	TP04_4.0-4.1_PART A	TP05_0.1-0.2_PART A	TP05_0.5-0.6_PART A
	C	lient sampli	ng date / time	01-APR-2009 15:00				
Compound	CAS Number	LOR	Unit	EM0902969-006	EM0902969-007	EM0902969-008	EM0902969-009	EM0902969-010
EP075I: Organochlorine Pesticides -	- Continued							
Endrin	72-20-8	0.03	mg/kg		<0.03		<0.03	
Endosulfan 2	33213-65-9	0.03	mg/kg		<0.03		<0.03	
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05		<0.05	
Endosulfan sulfate	1031-07-8	0.03	mg/kg		<0.03		<0.03	
4.4`-DDT	50-29-3	0.05	mg/kg		<0.05		<0.05	
Methoxychlor	72-43-5	0.03	mg/kg		<0.03		<0.03	
^ Sum of organochlorine pesticides		0.03	mg/kg		<0.03		<0.03	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.03	mg/kg		<0.03		<0.03	
^ Sum of DDD + DDE + DDT		0.05	mg/kg		<0.05		<0.05	
^ Chlordane	57-74-9	0.03	mg/kg		<0.03		<0.03	
^ Sum of other organochlorine		0.03	mg/kg		<0.03		<0.03	
pesticides								
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		10	mg/kg		<10		<10	
C10 - C14 Fraction		50	mg/kg		<50		<50	
C15 - C28 Fraction		100	mg/kg		<100		<100	
C29 - C36 Fraction		100	mg/kg		<100		<100	
^ C10 - C36 Fraction (sum)		50	mg/kg		<50		<50	
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%		86.9		104	
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%		73.8		84.2	
Toluene-D8	2037-26-5	0.1	%		78.1		87.4	
4-Bromofluorobenzene	460-00-4	0.1	%		85.4		95.2	
EP075S: Acid Extractable Surrogate	s							
2-Fluorophenol	367-12-4	0.1	%		98.9		119	
Phenol-d6	13127-88-3	0.1	%		82.8		108	
2-Chlorophenol-D4	93951-73-6	0.1	%		81.0		99.0	
2.4.6-Tribromophenol	118-79-6	0.1	%		91.0		118	
EP075T: Base/Neutral Extractable S	urrogates							
Nitrobenzene-D5	4165-60-0	0.1	%		65.9		80.7	
1.2-Dichlorobenzene-D4	2199-69-1	0.1	%		63.0		75.1	
2-Fluorobiphenyl	321-60-8	0.1	%		70.7		82.8	
Anthracene-d10	1719-06-8	0.1	%		77.0		90.6	
4-Terphenyl-d14	1718-51-0	0.1	%		67.8		81.0	

Sub-Matrix: SOIL		Clie	ent sample ID	TP06_0.1-0.2_PART A	TP06_1.0-1.1_PART A	TP07_0.5-0.6_PART A	TP07_2.0-2.1_PART A	DUP01_PART A
	Cli	ient sampli	ng date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902969-011	EM0902969-012	EM0902969-013	EM0902969-014	EM0902969-015
EA055: Moisture Content								
^ Moisture Content (dried @ 103°C)		1.0	%	13.7	16.2	30.2	18.8	18.5
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Copper	7440-50-8	5	mg/kg	10	5	<5	8	10
Lead	7439-92-1	5	mg/kg	20	9	7	8	9
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	5	3	3	8	8
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Tin	7440-31-5	5	mg/kg	<5		<5		<5
Zinc	7440-66-6	5	mg/kg	22	<5	<5	16	10
EG035T: Total Recoverable Mercur	ry by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EG048: Hexavalent Chromium (Alka	aline Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EK026G: Total Cyanide By Discrete	Analyser							
Total Cyanide	57-12-5	1	mg/kg	1		<1		<1
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg	70		<40		110
EP066: Polychlorinated Biphenyls ((PCB)							
Total Polychlorinated biphenyls		0.10	mg/kg	<0.10		<0.10		<0.10
EP074A: Monocyclic Aromatic Hydr	rocarbons							
Benzene	71-43-2	0.2	mg/kg	<0.2		<0.2		<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5		<0.5		<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5		<0.5		<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5		<0.5		<0.5
Styrene	100-42-5	0.5	mg/kg	<0.5		<0.5		<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		<0.5		<0.5
^ Sum of monocyclic aromatic		0.2	mg/kg	<0.2		<0.2		<0.2
hydrocarbons								
EP074I: Volatile Halogenated Comp	ounds							
Vinyl chloride	75-01-4	0.02	mg/kg	<0.02		<0.02		<0.02
1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.01		<0.01		<0.01
Methylene chloride	75-09-2	0.4	mg/kg	<0.4		<0.4		<0.4
trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.02		<0.02		<0.02
cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.01		<0.01		<0.01

Sub-Matrix: SOIL		Clie	ent sample ID	TP06_0.1-0.2_PART A	TP06_1.0-1.1_PART A	TP07_0.5-0.6_PART A	TP07_2.0-2.1_PART A	DUP01_PART A
	Cl	ient sampli	ng date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902969-011	EM0902969-012	EM0902969-013	EM0902969-014	EM0902969-015
EP074I: Volatile Halogenated Compou	Inds - Continued							
Chloroform	67-66-3	0.02	mg/kg	<0.02		<0.02		<0.02
1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.01		<0.01		<0.01
Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.01		<0.01		<0.01
1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.02		<0.02		<0.02
Trichloroethene	79-01-6	0.02	mg/kg	<0.02		<0.02		<0.02
1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.04		<0.04		<0.04
Tetrachloroethene	127-18-4	0.02	mg/kg	<0.02		<0.02		<0.02
1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.01		<0.01		<0.01
1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.02		<0.02		<0.02
Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.02		<0.02		<0.02
Chlorobenzene	108-90-7	0.02	mg/kg	<0.02		<0.02		<0.02
1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.02		<0.02		<0.02
1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.02		<0.02		<0.02
1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.01		<0.01		<0.01
^ Sum of volatile chlorinated		0.01	mg/kg	<0.01		<0.01		<0.01
hydrocarbons								
^ Sum of other chlorinated hydrocarbons		0.01	mg/kg	<0.01		<0.01		<0.01
(VIC EPA 448.3)								
EP075A: Phenolic Compounds (Halog	jenated)							
2-Chlorophenol	95-57-8	0.03	mg/kg	<0.03		<0.03		<0.03
2.4-Dichlorophenol	120-83-2	0.03	mg/kg	<0.03		<0.03		<0.03
2.6-Dichlorophenol	87-65-0	0.03	mg/kg	<0.03		<0.03		<0.03
4-Chloro-3-Methylphenol	59-50-7	0.03	mg/kg	<0.03		<0.03		<0.03
2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg	<0.05		<0.05		<0.05
2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg	<0.05		<0.05		<0.05
2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.03		<0.03		<0.03
2.3.4.5 &	4901-51-3/58-90-2	0.05	mg/kg	<0.05		<0.05		<0.05
2.3.4.6-Tetrachlorophenol								
Pentachlorophenol	87-86-5	0.2	mg/kg	<0.2		<0.2		<0.2
^ Sum of Phenols (halogenated)		0.03	mg/kg	<0.03		<0.03		<0.03
EP075A: Phenolic Compounds (Non-h	nalogenated)							
Phenol	108-95-2	1	mg/kg	<1		<1		<1
2-Methylphenol	95-48-7	1	mg/kg	<1		<1		<1
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1		<1		<1
2-Nitrophenol	88-75-5	1	mg/kg	<1		<1		<1
2.4-Dimethylphenol	105-67-9	1	mg/kg	<1		<1		<1
2.4-Dinitrophenol	51-28-5	5	mg/kg	<5		<5		<5
4-Nitrophenol	100-02-7	5	mg/kg	<5		<5		<5

Sub-Matrix: SOIL		Clie	ent sample ID	TP06_0.1-0.2_PART A	TP06_1.0-1.1_PART A	TP07_0.5-0.6_PART A	TP07_2.0-2.1_PART A	DUP01_PART A
	Cl	ient sampli	ng date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902969-011	EM0902969-012	EM0902969-013	EM0902969-014	EM0902969-015
EP075A: Phenolic Compounds (Non	-halogenated) - Conti	nued						
2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<5		<5		<5
Dinoseb	88-85-7	5	mg/kg	<5		<5		<5
2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<5		<5		<5
^ Sum of Phenols (non-halogenated)		1	mg/kg	<1		<1		<1
EP075B: Polynuclear Aromatic Hydr	ocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5		<0.5		<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		<0.5		<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		<0.5		<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5		<0.5		<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		<0.5		<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5		<0.5		<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		<0.5		<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5		<0.5		<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		<0.5		<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(b) &	205-99-2 207-08-9	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(k)fluoranthene								
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		<0.5		<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		<0.5		<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		<0.5		<0.5
^ Sum of polycyclic aromatic		0.5	mg/kg	<0.5		<0.5		<0.5
hydrocarbons								
EP075I: Organochlorine Pesticides								
alpha-BHC	319-84-6	0.03	mg/kg	<0.03		<0.03		<0.03
Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	<0.03		<0.03		<0.03
beta-BHC	319-85-7	0.03	mg/kg	<0.03		<0.03		<0.03
gamma-BHC	58-89-9	0.03	mg/kg	<0.03		<0.03		<0.03
delta-BHC	319-86-8	0.03	mg/kg	<0.03		<0.03		<0.03
Heptachlor	76-44-8	0.03	mg/kg	<0.03		<0.03		<0.03
Aldrin	309-00-2	0.03	mg/kg	<0.03		<0.03		<0.03
Heptachlor epoxide	1024-57-3	0.03	mg/kg	<0.03		<0.03		<0.03
cis-Chlordane	5103-71-9	0.03	mg/kg	<0.03		<0.03		<0.03
trans-Chlordane	5103-74-2	0.03	mg/kg	<0.03		<0.03		<0.03
Endosulfan 1	959-98-8	0.03	mg/kg	<0.03		<0.03		<0.03
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05		<0.05		<0.05
Dieldrin	60-57-1	0.03	mg/kg	<0.03		<0.03		<0.03
Endrin aldehyde	7421-93-4	0.03	mg/kg	<0.03		<0.03		<0.03
							· · · · · · · · · · · · · · · · · · ·	

Sub-Matrix: SOIL		Cli	ent sample ID	TP06_0.1-0.2_PART A	TP06_1.0-1.1_PART A	TP07_0.5-0.6_PART A	TP07_2.0-2.1_PART A	DUP01_PART A
	Cl	lient sampli	ng date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902969-011	EM0902969-012	EM0902969-013	EM0902969-014	EM0902969-015
EP075I: Organochlorine Pesticides -	Continued							
Endrin	72-20-8	0.03	mg/kg	<0.03		<0.03		<0.03
Endosulfan 2	33213-65-9	0.03	mg/kg	<0.03		<0.03		<0.03
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05		<0.05		<0.05
Endosulfan sulfate	1031-07-8	0.03	mg/kg	<0.03		<0.03		<0.03
4.4`-DDT	50-29-3	0.05	mg/kg	<0.05		<0.05		<0.05
Methoxychlor	72-43-5	0.03	mg/kg	<0.03		<0.03		<0.03
^ Sum of organochlorine pesticides		0.03	mg/kg	<0.03		<0.03		<0.03
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.03	mg/kg	<0.03		<0.03		<0.03
^ Sum of DDD + DDE + DDT		0.05	mg/kg	<0.05		<0.05		<0.05
^ Chlordane	57-74-9	0.03	mg/kg	<0.03		<0.03		<0.03
^ Sum of other organochlorine		0.03	mg/kg	<0.03		<0.03		<0.03
pesticides								
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		10	mg/kg	<10		<10		<10
C10 - C14 Fraction		50	mg/kg	<50		<50		<50
C15 - C28 Fraction		100	mg/kg	<100		<100		<100
C29 - C36 Fraction		100	mg/kg	<100		<100		<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50		<50		<50
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	93.2		74.0		89.2
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	90.2		81.5		103
Toluene-D8	2037-26-5	0.1	%	91.9		80.7		104
4-Bromofluorobenzene	460-00-4	0.1	%	100		87.9		114
EP075S: Acid Extractable Surrogate	s							
2-Fluorophenol	367-12-4	0.1	%	112		100		93.0
Phenol-d6	13127-88-3	0.1	%	99.4		79.6		87.0
2-Chlorophenol-D4	93951-73-6	0.1	%	90.7		77.1		85.1
2.4.6-Tribromophenol	118-79-6	0.1	%	109		73.5		62.2
EP075T: Base/Neutral Extractable St	urrogates							
Nitrobenzene-D5	4165-60-0	0.1	%	74.8		60.2		66.4
1.2-Dichlorobenzene-D4	2199-69-1	0.1	%	70.2		57.7		69.0
2-Fluorobiphenyl	321-60-8	0.1	%	74.3		62.2		76.6
Anthracene-d10	1719-06-8	0.1	%	82.5		68.4		83.6
4-Terphenyl-d14	1718-51-0	0.1	%	74.9		60.5		70.7

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	42.4	131
EP074S: VOC Surrogates			
1.2-Dichloroethane-D4	17060-07-0	70	130
Toluene-D8	2037-26-5	70	130
4-Bromofluorobenzene	460-00-4	70	130
EP075S: Acid Extractable Surrogates			
2-Fluorophenol	367-12-4	27	130
Phenol-d6	13127-88-3	22	126
2-Chlorophenol-D4	93951-73-6	25	126
2.4.6-Tribromophenol	118-79-6	11	108
EP075T: Base/Neutral Extractable Surrogates			
Nitrobenzene-D5	4165-60-0	21	134
1.2-Dichlorobenzene-D4	2199-69-1	22	119
2-Fluorobiphenyl	321-60-8	23	133
Anthracene-d10	1719-06-8	49	133
4-Terphenyl-d14	1718-51-0	43	141

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EM0902969	Page	: 1 of 13
Client	: FULTON HOGAN	Laboratory	: Environmental Division Melbourne
Contact	: MR PHIL RILEY	Contact	: Steven McGrath
Address	: 10-30 DANA COURT	Address	: 4 Westall Rd Springvale VIC Australia 3171
	DANDENONG VIC 3175		
E-mail	: phil.riley@fultonhogan.com.au	E-mail	: steven.mcgrath@alsenviro.com
Telephone	;	Telephone	: +61-3-8549 9600
Facsimile	:	Facsimile	: +61-3-8549 9601
Project	: PD4008 - Kelletts Road Drain Wetland	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 01-APR-2009
Sampler	:	Issue Date	: 08-APR-2009
Order number	:		
		No. of samples received	: 15
Quote number	: ME/363/08	No. of samples analysed	: 15

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%	
A055: Moisture Co	ontent (QC Lot: 941231)									
EM0902967-004	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	15.1	15.5	2.2	0% - 50%	
EM0902969-007	TP04_0.5-0.6_PART A	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	11.9	11.9	0.0	0% - 50%	
EG005T: Total Meta	Is by ICP-AES (QC Lot: 94	1224)								
EM0902967-002	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.0	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	21	17	18.7	No Limit	
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.0	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	<5	42.6	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	22	14	46.7	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	32	20	48.8	No Limit	
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	52	35	38.2	No Limit	
EM0902969-009 TP05_0.1-0.2_PART A	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit		
	EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.0	No Limit		
	EG005T: Nickel	7440-02-0	2	mg/kg	4	4	0.0	No Limit		
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.0	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	8	8	0.0	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	19	19	0.0	No Limit	
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	15	15	0.0	No Limit	
EG035T: Total Reco	overable Mercury by FIMS	(QC Lot: 941225)								
EM0902967-002	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
EM0902969-009	TP05_0.1-0.2_PART A	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
EG048: Hexavalent	Chromium (Alkaline Digest	t) (QC Lot: 941229)								
EM0902969-001	TP01_0.5-0.6_PART A	EG048: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
EM0902969-010	 TP05_0.5-0.6_PART A	EG048: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
K026G: Total Cvan	nide By Discrete Analyser									
EM0902967-002	Anonymous	EK026G: Total Cyanide	57-12-5	1	mg/kg	<1	<1	0.0	No Limit	
K040T. Eluorido To	otal (QC Lot: 942182)									
EM0902759-002	Anonymous	EK040T: Fluoride	16984-48-8	40	mg/kg	150	210	31.7	No Limit	
EM0902969-005	TP03 1.0-1.1 PART A		16984-48-8	40	mg/kg	100	140	30.2	No Limit	

Page	: 4 of 13
Work Order	: EM0902969
Client	: FULTON HOGAN
Project	PD4008 - Kelletts Road Drain Wetland

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P066: Polychlorina	ated Biphenyls (PCB) (QC	Lot: 941221)							
EM0902969-002	TP01_3.0-3.1_PART A	EP066-EM: Total Polychlorinated biphenyls		0.10	mg/kg	<0.10	<0.10	0.0	No Limit
P074A: Monocyclic	c Aromatic Hydrocarbons	(QC Lot: 941223)							
EM0902969-002	TP01_3.0-3.1_PART A	EP074-UT: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP074-UT: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP074-UT: Styrene	100-42-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP074-UT: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
P074I: Volatile Hale	ogenated Compounds (Q	C Lot: 941223)							
EM0902969-002	TP01_3.0-3.1_PART A	EP074-UT: 1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
		EP074-UT: 1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.01	<0.01	0.0	No Limit
	EP074-UT: Vinyl chloride	75-01-4	0.02	mg/kg	<0.02	<0.02	0.0	No Limit	
	EP074-UT: trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.02	<0.02	0.0	No Limit	
	EP074-UT: Chloroform	67-66-3	0.02	mg/kg	<0.02	<0.02	0.0	No Limit	
		EP074-UT: 1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: Trichloroethene	79-01-6	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: Tetrachloroethene	127-18-4	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: 1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: Chlorobenzene	108-90-7	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.02	<0.02	0.0	No Limit
		EP074-UT: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.04	<0.04	0.0	No Limit
		EP074-UT: Methylene chloride	75-09-2	0.4	mg/kg	<0.4	<0.4	0.0	No Limit
P075A: Phenolic C	ompounds (Halogenated)	(QC Lot: 941220)							
M0902969-002	TP01_3.0-3.1_PART A	EP075-EM: 2-Chlorophenol	95-57-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.4-Dichlorophenol	120-83-2	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.6-Dichlorophenol	87-65-0	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 4-Chloro-3-Methylphenol	59-50-7	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.03	mg/kg	<0.03	<0.03	0.0	No Limit
		EP075-EM: 2.4.5-Trichlorophenol	95-95-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 2.4.6-Trichlorophenol	88-06-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/58-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
			0-2						

Page	: 5 of 13
Work Order	: EM0902969
Client	: FULTON HOGAN
Project	PD4008 - Kelletts Road Drain Wetland

ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
P075A: Phenolic C	ompounds (Halogenated)	(QC Lot: 941220) - continued							
EM0902969-002	TP01_3.0-3.1_PART A	EP075-EM: Pentachlorophenol	87-86-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
P075A: Phenolic C	ompounds (Non-halogena	ted) (QC Lot: 941220)							
EM0902969-002	TP01_3.0-3.1_PART A	EP075-EM: Phenol	108-95-2	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2-Methylphenol	95-48-7	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2-Nitrophenol	88-75-5	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dimethylphenol	105-67-9	1	mg/kg	<1	<1	0.0	No Limit
		EP075-EM: 2.4-Dinitrophenol	51-28-5	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 4-Nitrophenol	100-02-7	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: Dinoseb	88-85-7	5	mg/kg	<5	<5	0.0	No Limit
		EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	5	mg/kg	<5	<5	0.0	No Limit
P075B: Polynuclea	r Aromatic Hydrocarbons	(QC Lot: 941220)							
EM0902969-002	TP01 3.0-3.1 PART A	EP075-EM: Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	EP075-EM: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
	EP075-EM: Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
	EP075-EM: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
	EP075-EM: Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075-EM: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benzo(b) & Benzo(k)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			207-08-9						
		EP075-EM: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
P075I: Organochlo	rine Pesticides (QC Lot: 9	941220)							
EM0902969-002	TP01 3.0-3.1 PART A	EP075-EM: alpha-BHC	319-84-6	0.03	mg/kg	< 0.03	<0.03	0.0	No Limit
		EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.03	mg/kg	< 0.03	<0.03	0.0	No Limit
		EP075-EM: beta-BHC	319-85-7	0.03	mg/kg	< 0.03	<0.03	0.0	No Limit
		EP075-EM: gamma-BHC	58-89-9	0.03	mg/kg	< 0.03	< 0.03	0.0	No Limit
		EP075-EM: delta-BHC	319-86-8	0.03	mg/kg	< 0.03	< 0.03	0.0	No Limit
		EP075-EM: Heptachlor	76-44-8	0.03	mg/kg	< 0.03	< 0.03	0.0	No Limit
		EP075-EM: Aldrin	309-00-2	0.03	mg/kg	< 0.03	< 0.03	0.0	No Limit
		EP075-EM: Heptachlor epoxide	1024-57-3	0.03	mg/kg	< 0.03	<0.03	0.0	No Limit
		EP075-EM: cis-Chlordane	5103-71-9	0.03	mg/kg	< 0.03	< 0.03	0.0	No Limit

Page	: 6 of 13
Work Order	EM0902969
Client	: FULTON HOGAN
Project	: PD4008 - Kelletts Road Drain Wetland

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP075I: Organochic	orine Pesticides (QC Lot: 9	41220) - continued									
EM0902969-002	TP01_3.0-3.1_PART A	EP075-EM: trans-Chlordane	5103-74-2	0.03	mg/kg	<0.03	<0.03	0.0	No Limit		
		EP075-EM: Endosulfan 1	959-98-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit		
		EP075-EM: Dieldrin	60-57-1	0.03	mg/kg	<0.03	<0.03	0.0	No Limit		
		EP075-EM: Endrin aldehyde	7421-93-4	0.03	mg/kg	<0.03	<0.03	0.0	No Limit		
		EP075-EM: Endrin	72-20-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit		
		EP075-EM: Endosulfan 2	33213-65-9	0.03	mg/kg	<0.03	<0.03	0.0	No Limit		
		EP075-EM: Endosulfan sulfate	1031-07-8	0.03	mg/kg	<0.03	<0.03	0.0	No Limit		
		EP075-EM: Methoxychlor	72-43-5	0.03	mg/kg	<0.03	<0.03	0.0	No Limit		
		EP075-EM: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit		
		EP075-EM: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit		
		EP075-EM: 4.4`-DDT	50-29-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit		
EP080/071: Total Pe	etroleum Hydrocarbons (Q	C Lot: 941218)									
EM0902967-002	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
EM0902969-013	TP07_0.5-0.6_PART A	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
EP080/071: Total Pe	etroleum Hydrocarbons (Q	C Lot: 941223)									
EM0902969-002	TP01_3.0-3.1_PART A	EP074-UT: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005T: Total Metals by ICP-AES (QCLot: 941224	4)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	13.6 mg/kg	102	82.8	119
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	2.8 mg/kg	102	85.4	117
EG005T: Copper	7440-50-8	5	mg/kg	<5	55.1 mg/kg	107	85.5	116
EG005T: Lead	7439-92-1	5	mg/kg	<5	54.9 mg/kg	102	85.4	115
EG005T: Molybdenum	7439-98-7	2	mg/kg	<2				
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.1 mg/kg	99.6	86.6	113
EG005T: Selenium	7782-49-2	5	mg/kg	<5				
EG005T: Silver	7440-22-4	2	mg/kg	<2	5.23 mg/kg	96.2	80.5	119
EG005T: Tin	7440-31-5	5	mg/kg	<5				
EG005T: Zinc	7440-66-6	5	mg/kg	<5	105 mg/kg	91.7	81.3	111
EG035T: Total Recoverable Mercury by FIMS (QC	CLot: 941225)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	1.47 mg/kg	117	71.9	119
EG048: Hexavalent Chromium (Alkaline Digest)(OCI of: 941229)							
EG048: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	40 mg/kg	98.3	80	120
				0.0	i o ingrig			
EK026G: Total Cyanide By Discrete Analyser (QC	Lot: 941228) 57-12-5	1	malka	<1	50 mg/kg	106	86.3	118
EK026G: Total Cyanide	57-12-5	I	mg/kg		50 mg/kg	100	00.3	110
EK040T: Fluoride Total (QCLot: 942182)								
EK040T: Fluoride	16984-48-8	40	mg/kg	<40	110 mg/kg	94.5	70	130
EP066: Polychlorinated Biphenyls (PCB) (QCLot:	941221)							
EP066-EM: Total Polychlorinated biphenyls		0.1	mg/kg		0.5 mg/kg	116	61.2	123
		0.10	mg/kg	<0.10				
EP074A: Monocyclic Aromatic Hydrocarbons (QC	Lot: 941223)							
EP074-UT: Benzene	71-43-2	0.2	mg/kg	<0.2	2.1 mg/kg	101	80.0	120
EP074-UT: Toluene	108-88-3	0.5	mg/kg	<0.5	2.1 mg/kg	103	80.0	120
EP074-UT: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2.1 mg/kg	104	80.0	120
EP074-UT: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4.2 mg/kg	104	80.0	120
	106-42-3							
EP074-UT: Styrene	100-42-5	0.5	mg/kg	<0.5	0.1 mg/kg	103	76.0	117
EP074-UT: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2.1 mg/kg	102	80.0	120
EP074I: Volatile Halogenated Compounds (QCLo	: 941223)							
EP074-UT: Vinyl chloride	75-01-4	0.02	mg/kg	<0.02	0.1 mg/kg	111	65.6	112
EP074-UT: 1.1-Dichloroethene	75-35-4	0.01	mg/kg	<0.01	0.1 mg/kg	108	70.8	122
EP074-UT: Methylene chloride	75-09-2	0.4	mg/kg	<0.4	2.1 mg/kg	# 61.9	75.3	131
EP074-UT: trans-1.2-Dichloroethene	156-60-5	0.02	mg/kg	<0.02	0.1 mg/kg	107	79.0	121

Page	: 8 of 13
Work Order	: EM0902969
Client	: FULTON HOGAN
Project	: PD4008 - Kelletts Road Drain Wetland

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074I: Volatile Halogenated Compounds (QCLot	: 941223) - continued							
EP074-UT: cis-1.2-Dichloroethene	156-59-2	0.01	mg/kg	<0.01	0.1 mg/kg	104	80.0	122
EP074-UT: Chloroform	67-66-3	0.02	mg/kg	<0.02	0.1 mg/kg	99.1	70.4	115
EP074-UT: 1.1.1-Trichloroethane	71-55-6	0.01	mg/kg	<0.01	0.1 mg/kg	104	72.0	120
EP074-UT: Carbon Tetrachloride	56-23-5	0.01	mg/kg	<0.01	0.1 mg/kg	103	65.5	120
EP074-UT: 1.2-Dichloroethane	107-06-2	0.02	mg/kg	<0.02	0.1 mg/kg	101	71.6	128
EP074-UT: Trichloroethene	79-01-6	0.02	mg/kg	<0.02	0.1 mg/kg	105	75.7	124
EP074-UT: 1.1.2-Trichloroethane	79-00-5	0.04	mg/kg	<0.04	0.1 mg/kg	108	80.0	120
EP074-UT: Tetrachloroethene	127-18-4	0.02	mg/kg	<0.02	0.1 mg/kg	120	70.0	130
EP074-UT: 1.1.1.2-Tetrachloroethane	630-20-6	0.01	mg/kg	<0.01				
EP074-UT: 1.1.2.2-Tetrachloroethane	79-34-5	0.02	mg/kg	<0.02	0.1 mg/kg	108	75.7	126
EP074-UT: Hexachlorobutadiene	87-68-3	0.02	mg/kg	<0.02	0.1 mg/kg	97.2	68.4	118
EP074-UT: Chlorobenzene	108-90-7	0.02	mg/kg	<0.02	0.1 mg/kg	107	79.7	124
EP074-UT: 1.4-Dichlorobenzene	106-46-7	0.02	mg/kg	<0.02	0.1 mg/kg	89.7	72.3	116
EP074-UT: 1.2-Dichlorobenzene	95-50-1	0.02	mg/kg	<0.02	0.1 mg/kg	98.6	80.0	120
EP074-UT: 1.2.4-Trichlorobenzene	120-82-1	0.01	mg/kg	<0.01	0.1 mg/kg	100	73.0	118
EP075A: Phenolic Compounds (Halogenated) (QC	Lot: 941220)							
EP075-EM: 2-Chlorophenol	95-57-8	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	81.4	39.8	139
P075-EM: 2.4-Dichlorophenol	120-83-2	0.02	mg/kg	<0.02				
·		0.025	mg/kg		0.5 mg/kg	81.8	35	135
P075-EM: 2.6-Dichlorophenol	87-65-0	0.02	mg/kg	<0.02				
·		0.025	mg/kg		0.5 mg/kg	75.5	36.7	136
EP075-EM: 4-Chloro-3-Methylphenol	59-50-7	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	82.8	45.2	141
EP075-EM: 2.4.5-Trichlorophenol	95-95-4	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	75.9	41.4	137
EP075-EM: 2.4.6-Trichlorophenol	88-06-2	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	75.0	42.2	143
EP075-EM: 2.3.5.6-Tetrachlorophenol	935-95-5	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	63.1	41	139
EP075-EM: 2.3.4.5 & 2.3.4.6-Tetrachlorophenol	4901-51-3/5	0.05	mg/kg	<0.05	1 mg/kg	70.3	23.6	145
	8-90-2							
EP075-EM: Pentachlorophenol	87-86-5	0.02	mg/kg	<0.1				
		0.025	mg/kg		0.5 mg/kg	60.2	25	144
P075A: Phenolic Compounds (Non-halogenated)	(QCLot: 941220)							
EP075-EM: Phenol	108-95-2	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	86.9	44	144
EP075-EM: 2-Methylphenol	95-48-7	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	81.6	39.1	135

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075A: Phenolic Compounds (Non-halogenated)(QCLot: 941220) - cont	tinued							
EP075-EM: 3- & 4-Methylphenol	1319-77-3	0.02	mg/kg	<0.02					
		0.025	mg/kg		1.0 mg/kg	86.2	33.8	176	
EP075-EM: 2-Nitrophenol	88-75-5	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	80.1	25.6	145	
EP075-EM: 2.4-Dimethylphenol	105-67-9	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	95.9	10	138	
EP075-EM: 2.4-Dinitrophenol	51-28-5	2	mg/kg	<2	3 mg/kg	45.8	15.9	136	
EP075-EM: 4-Nitrophenol	100-02-7	2	mg/kg	<2	3 mg/kg	81.0	41.1	155	
EP075-EM: 2-Methyl-4.6-dinitrophenol	8071-51-0	2	mg/kg	<2	3 mg/kg	54.0	15.4	133	
EP075-EM: Dinoseb	88-85-7	2	mg/kg	<2	3 mg/kg	64.6	32	136	
EP075-EM: 2-Cyclohexyl-4.6-Dinitrophenol	131-89-5	2	mg/kg	<2	2.5 mg/kg	46.4	10	169	
EP075B: Polynuclear Aromatic Hydrocarbons (QCL	ot: 941220)								
EP075-EM: Naphthalene	91-20-3	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	74.3	41.2	136	
EP075-EM: Acenaphthene	83-32-9	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	76.0	48	133	
EP075-EM: Acenaphthylene	208-96-8	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	78.4	45.2	137	
EP075-EM: Fluorene	86-73-7	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	77.8	49.6	136	
EP075-EM: Phenanthrene	85-01-8	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	73.5	61.8	132	
EP075-EM: Anthracene	120-12-7	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	71.9	61.3	127	
EP075-EM: Fluoranthene	206-44-0	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	73.6	66.2	134	
EP075-EM: Pyrene	129-00-0	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	73.8	67.5	132	
EP075-EM: Benz(a)anthracene	56-55-3	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	74.8	64.9	133	
EP075-EM: Chrysene	218-01-9	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	75.4	66.2	136	
EP075-EM: Benzo(b) & Benzo(k)fluoranthene	205-99-2	0.05	mg/kg	<0.05	1.0 mg/kg	78.0	65.4	133	
	207-08-9								
EP075-EM: Benzo(a)pyrene	50-32-8	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	77.4	62.4	131	
EP075-EM: Indeno(1.2.3.cd)pyrene	193-39-5	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	79.2	31.5	148	
EP075-EM: Dibenz(a.h)anthracene	53-70-3	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	79.7	33.3	145	

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075B: Polynuclear Aromatic Hydrocarbons (C	CLot: 941220) - continued							
EP075-EM: Benzo(g.h.i)perylene	191-24-2	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	78.2	28.9	153
EP075I: Organochlorine Pesticides (QCLot: 941)	220)							1
EP075-EM: alpha-BHC	319-84-6	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	80.9	54.9	137
EP075-EM: Hexachlorobenzene (HCB)	118-74-1	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	83.2	24.4	133
EP075-EM: beta-BHC	319-85-7	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	81.5	47	138
EP075-EM: gamma-BHC	58-89-9	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	80.2	60.3	135
EP075-EM: delta-BHC	319-86-8	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	75.3	68.1	132
EP075-EM: Heptachlor	76-44-8	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	75.1	61.4	132
EP075-EM: Aldrin	309-00-2	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	71.6	63.1	131
EP075-EM: Heptachlor epoxide	1024-57-3	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	74.2	67.9	129
EP075-EM: cis-Chlordane	5103-71-9	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	74.5	38.8	137
EP075-EM: trans-Chlordane	5103-74-2	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	74.5	65	133
EP075-EM: Endosulfan 1	959-98-8	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	79.2	63.5	136
EP075-EM: 4.4`-DDE	72-55-9	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	78.6	62.3	133
EP075-EM: Dieldrin	60-57-1	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	75.2	67.6	134
EP075-EM: Endrin aldehyde	7421-93-4	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	51.0	25.1	177
EP075-EM: Endrin	72-20-8	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	76.9	60.7	137
EP075-EM: Endosulfan 2	33213-65-9	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	73.6	67.8	138
EP075-EM: 4.4`-DDD	72-54-8	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	76.3	66.5	135
EP075-EM: Endosulfan sulfate	1031-07-8	0.02	mg/kg	<0.02				
EP075-EM: 4.4`-DDT	50-29-3	0.02	mg/kg	<0.02				
		0.025	mg/kg		0.5 mg/kg	76.1	61	139

Page	: 11 of 13
Work Order	: EM0902969
Client	: FULTON HOGAN
Project	PD4008 - Kelletts Road Drain Wetland

Sub-Matrix: SOIL	ub-Matrix: SOIL				Laboratory Control Spike (LCS) Report				
					Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075I: Organochlorine Pesticides (QCLot: 941220) - continued									
EP075-EM: Methoxychlor	72-43-5	0.02	mg/kg	<0.02					
		0.025	mg/kg		0.5 mg/kg	76.3	64.2	138	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 9	941218)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	606 mg/kg	76.3	69	123	
EP071: C15 - C28 Fraction		100	mg/kg	<100	1460 mg/kg	97.7	69	127	
EP071: C29 - C36 Fraction		100	mg/kg	<100	342 mg/kg	93.9	70	130	
EP080/071: Total Petroleum Hydrocarbons (QCLot: \$	941223)								
EP074-UT: C6 - C9 Fraction		10	mg/kg	<10	33.1 mg/kg	96.3	73.2	120	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	Spike Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Hig	
EG005T: Total Metal	s by ICP-AES (QCLot: 941224)							
EM0902969-001	TP01_0.5-0.6_PART A	EG005T: Arsenic	7440-38-2	50 mg/kg	82.2	70	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	91.7	70	130	
		EG005T: Copper	7440-50-8	50 mg/kg	102	70	130	
		EG005T: Lead	7439-92-1	50 mg/kg	93.3	70	130	
		EG005T: Molybdenum	7439-98-7	50 mg/kg	70.7	70	130	
		EG005T: Nickel	7440-02-0	50 mg/kg	90.1	70	130	
		EG005T: Selenium	7782-49-2	50 mg/kg	77.9	70	130	
		EG005T: Zinc	7440-66-6	50 mg/kg	84.7	70	130	
EG035T: Total Reco	overable Mercury by FIMS (QCLot:	941225)						
EM0902969-001	TP01 0.5-0.6 PART A	EG035T: Mercury	7439-97-6	5.0 mg/kg	116	70	130	
EG048: Hoxavalont (Chromium (Alkaline Digest) (QCLo			0.0				
EM0902969-002	TP01 3.0-3.1 PART A		18540-29-9	40 mg/kg	101	70	130	
		EG048: Hexavalent Chromium	10340-29-9	40 mg/kg		70	130	
	ide By Discrete Analyser (QCLot:							
EM0902969-002	TP01_3.0-3.1_PART A	EK026G: Total Cyanide	57-12-5	50 mg/kg	97.3	70	13	
EK040T: Fluoride To	tal (QCLot: 942182)							
EM0902759-002	Anonymous	EK040T: Fluoride	16984-48-8	500 mg/kg	79.0	70	130	
EP066: Polychlorina	ted Biphenyls (PCB) (QCLot: 9412	221)						
EM0902969-005	TP03 1.0-1.1 PART A	EP066-EM: Total Polychlorinated biphenyls		0.5 mg/kg	72.3	67	12:	
	Aromatic Hydrocarbons (QCLot:							
EM0902969-003	TP02 0.5-0.6 PART A	EP074-UT: Benzene	71-43-2	2 mg/kg	77.0	70	130	
LIN0302303-003		EP074-01: Delizene	108-88-3	2 mg/kg	84.3	70	130	
			100 00 0	2 mg/ng	04.0	10	100	
	ogenated Compounds (QCLot: 94							
EM0902969-003	TP02_0.5-0.6_PART A	EP074-UT: 1.1-Dichloroethene	75-35-4	2 mg/kg	81.4	70	130	
		EP074-UT: Trichloroethene	79-01-6	2 mg/kg	85.6	70	130	
		EP074-UT: Chlorobenzene	108-90-7	2 mg/kg	100	70	130	
EP075A: Phenolic C	ompounds (Halogenated) (QCLot	: 941220)						
EM0902969-003	TP02_0.5-0.6_PART A	EP075-EM: 2-Chlorophenol	95-57-8	1 mg/kg	79.2	70	13	
		EP075-EM: 4-Chloro-3-Methylphenol	59-50-7	1 mg/kg	79.8	70	13	
		EP075-EM: Pentachlorophenol	87-86-5	1 mg/kg	123	70	130	
EP075A: Phenolic C	ompounds (Non-halogenated)(Q0	CLot: 941220)						
EM0902969-003	TP02_0.5-0.6_PART A	EP075-EM: Phenol	108-95-2	1 mg/kg	79.5	70	13	
		EP075-EM: 2-Nitrophenol	88-75-5	1 mg/kg	# 62.1	70	130	

Page	: 13 of 13
Work Order	: EM0902969
Client	: FULTON HOGAN
Project	PD4008 - Kelletts Road Drain Wetland

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	Spike Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP075B: Polynuclea	ar Aromatic Hydrocarbons (QCLot: 9412	20) - continued						
EM0902969-003	TP02_0.5-0.6_PART A	EP075-EM: Acenaphthene	83-32-9	1 mg/kg	77.5	70	130	
		EP075-EM: Pyrene	129-00-0	1 mg/kg	75.4	70	130	
EP080/071: Total Pe	troleum Hydrocarbons (QCLot: 941218)							
EM0902967-002	Anonymous	EP071: C10 - C14 Fraction		606 mg/kg	76.3	60	130	
		EP071: C15 - C28 Fraction		1460 mg/kg	96.7	60	130	
		EP071: C29 - C36 Fraction		342 mg/kg	93.9	60	130	
EP080/071: Total Pe	troleum Hydrocarbons (QCLot: 941223)							
EM0902969-003	TP02_0.5-0.6_PART A	EP074-UT: C6 - C9 Fraction		28 mg/kg	71.2	70	130	

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EM0902969	Page	: 1 of 9
Client	: FULTON HOGAN	Laboratory	: Environmental Division Melbourne
Contact	: MR PHIL RILEY	Contact	: Steven McGrath
Address	: 10-30 DANA COURT DANDENONG VIC 3175	Address	: 4 Westall Rd Springvale VIC Australia 3171
E-mail	: phil.riley@fultonhogan.com.au	E-mail	: steven.mcgrath@alsenviro.com
Telephone	:	Telephone	: +61-3-8549 9600
Facsimile	:	Facsimile	: +61-3-8549 9601
Project	: PD4008 - Kelletts Road Drain Wetland	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 01-APR-2009
Sampler	:	Issue Date	: 08-APR-2009
Order number	:		
		No. of samples received	: 15
Quote number	: ME/363/08	No. of samples analysed	: 15

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Melbourne

Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL					Evaluation	× = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved								
TP01_0.5-0.6_PART A,	TP01_3.0-3.1_PART A,	01-APR-2009				06-APR-2009	08-APR-2009	✓
TP02_0.5-0.6_PART A,	TP02_3.0-3.1_PART A,							
TP03_1.0-1.1_PART A,	TP03_4.0-4.1_PART A,							
TP04_0.5-0.6_PART A,	TP04_4.0-4.1_PART A,							
TP05_0.1-0.2_PART A,	TP05_0.5-0.6_PART A,							
TP06_0.1-0.2_PART A,	TP06_1.0-1.1_PART A,							
TP07_0.5-0.6_PART A,	TP07_2.0-2.1_PART A,							
DUP01_PART A								
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved								
TP01_0.5-0.6_PART A,	TP01_3.0-3.1_PART A,	01-APR-2009	07-APR-2009	28-SEP-2009	✓	07-APR-2009	28-SEP-2009	✓
TP02_0.5-0.6_PART A,	TP02_3.0-3.1_PART A,							
TP03_1.0-1.1_PART A,	TP03_4.0-4.1_PART A,							
TP04_0.5-0.6_PART A,	TP04_4.0-4.1_PART A,							
TP05_0.1-0.2_PART A,	TP05_0.5-0.6_PART A,							
TP06_0.1-0.2_PART A,	TP06_1.0-1.1_PART A,							
TP07_0.5-0.6_PART A,	TP07_2.0-2.1_PART A,							
DUP01_PART A								
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved								
TP01_0.5-0.6_PART A,	TP01_3.0-3.1_PART A,	01-APR-2009	07-APR-2009	28-SEP-2009	✓	08-APR-2009	29-APR-2009	✓
TP02_0.5-0.6_PART A,	TP02_3.0-3.1_PART A,							
TP03_1.0-1.1_PART A,	TP03_4.0-4.1_PART A,							
TP04_0.5-0.6_PART A,	TP04_4.0-4.1_PART A,							
TP05_0.1-0.2_PART A,	TP05_0.5-0.6_PART A,							
TP06_0.1-0.2_PART A,	TP06_1.0-1.1_PART A,							
TP07_0.5-0.6_PART A,	TP07_2.0-2.1_PART A,							
DUP01_PART A								

Page	: 3 of 9
Work Order	: EM0902969
Client	: FULTON HOGAN
Project	: PD4008 - Kelletts Road Drain Wetland

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG048: Hexavalent Chromium (Alkaline Dig	lest)							
Soil Glass Jar - Unpreserved								
TP01_0.5-0.6_PART A,	TP01_3.0-3.1_PART A,	01-APR-2009	07-APR-2009	29-APR-2009	✓	08-APR-2009	14-APR-2009	✓
TP02_0.5-0.6_PART A,	TP02_3.0-3.1_PART A,							
TP03_1.0-1.1_PART A,	TP03_4.0-4.1_PART A,							
TP04_0.5-0.6_PART A,	TP04_4.0-4.1_PART A,							
TP05_0.1-0.2_PART A,	TP05_0.5-0.6_PART A,							
TP06_0.1-0.2_PART A,	TP06_1.0-1.1_PART A,							
TP07_0.5-0.6_PART A,	TP07_2.0-2.1_PART A,							
DUP01_PART A								
EK026G: Total Cyanide By Discrete Analys	er							
Soil Glass Jar - Unpreserved								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009	07-APR-2009	08-APR-2009	✓	08-APR-2009	21-APR-2009	 ✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							
EK040T: Fluoride Total								
Pulp Bag								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009				03-APR-2009	08-APR-2009	 ✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							
EP066: Polychlorinated Biphenyls (PCB)				-				
Soil Glass Jar - Unpreserved								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009	07-APR-2009	15-APR-2009	✓	07-APR-2009	17-MAY-2009	 ✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							
EP074A: Monocyclic Aromatic Hydrocarbo	ns							
Soil Glass Jar - Unpreserved								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009	07-APR-2009	15-APR-2009	✓	07-APR-2009	15-APR-2009	 ✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							
EP074I: Volatile Halogenated Compounds								
Soil Glass Jar - Unpreserved								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009	07-APR-2009	15-APR-2009	✓	07-APR-2009	15-APR-2009	✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							
Page	: 4 of 9							
------------	--							
Work Order	: EM0902969							
Client	: FULTON HOGAN							
Project	: PD4008 - Kelletts Road Drain Wetland							

Matrix: SOIL					Evaluation	× = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075A: Phenolic Compounds (Halogenated)								
Soil Glass Jar - Unpreserved								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009	07-APR-2009	15-APR-2009	 ✓ 	07-APR-2009	17-MAY-2009	✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							
EP075A: Phenolic Compounds (Non-halogenate	d)							
Soil Glass Jar - Unpreserved								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009	07-APR-2009	15-APR-2009	 ✓ 	07-APR-2009	17-MAY-2009	✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							
EP075B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009	07-APR-2009	15-APR-2009	 ✓ 	07-APR-2009	17-MAY-2009	✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							
EP075I: Organochlorine Pesticides								
Soil Glass Jar - Unpreserved								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009	07-APR-2009	15-APR-2009	 ✓ 	07-APR-2009	17-MAY-2009	✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved								
TP01_3.0-3.1_PART A,	TP02_0.5-0.6_PART A,	01-APR-2009	07-APR-2009	15-APR-2009	 ✓ 	07-APR-2009	15-APR-2009	✓
TP03_1.0-1.1_PART A,	TP04_0.5-0.6_PART A,							
TP05_0.1-0.2_PART A,	TP06_0.1-0.2_PART A,							
TP07_0.5-0.6_PART A,	DUP01_PART A							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	19	10.5	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PCB - VIC EPA 448.3 Screen	EP066-EM	1	8	12.5	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Semivolatile Organic Compounds - Waste Classification	EP075-EM	1	8	12.5	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Cyanide By Discrete Analyser	EK026G	1	9	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Fluoride	EK040T	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Hexavalent Chromium by Alkaline Digestion	EG048	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	2	16	12.5	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	16	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	2	12	16.7	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
/olatile Organic Compounds - Ultra-trace	EP074-UT	1	8	12.5	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
_aboratory Control Samples (LCS)							
PCB - VIC EPA 448.3 Screen	EP066-EM	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Semivolatile Organic Compounds - Waste Classification	EP075-EM	1	8	12.5	5.0	 ✓ 	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Cyanide By Discrete Analyser	EK026G	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Fluoride	EK040T	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Hexavalent Chromium by Alkaline Digestion	EG048	1	15	6.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	16	6.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	12	8.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Volatile Organic Compounds - Ultra-trace	EP074-UT	1	8	12.5	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PCB - VIC EPA 448.3 Screen	EP066-EM	1	8	12.5	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Semivolatile Organic Compounds - Waste Classification	EP075-EM	1	8	12.5	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Cyanide By Discrete Analyser	EK026G	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Fluoride	EK040T	1	20	5.0	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fotal Hexavalent Chromium by Alkaline Digestion	EG048	1	15	6.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	16	6.3	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	16	6.3	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	12	8.3	5.0	 ✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
/olatile Organic Compounds - Ultra-trace	EP074-UT	1	8	12.5	5.0	· ·	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)						•	
PCB - VIC EPA 448.3 Screen	EP066-EM	1	8	12.5	5.0	✓	ALS QCS3 requirement
Semivolatile Organic Compounds - Waste Classification	EP075-EM	1	8	12.5	5.0		ALS QCS3 requirement
Total Cyanide By Discrete Analyser	EK026G	1	9	11.1	5.0		ALS QCS3 requirement
Total Fluoride	EK040T	1	20	5.0	5.0		ALS QCS3 requirement

Page	: 6 of 9
Work Order	: EM0902969
Client	: FULTON HOGAN
Project	: PD4008 - Kelletts Road Drain Wetland

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency n	ot within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Total Hexavalent Chromium by Alkaline Digestion	EG048	1	15	6.7	5.0	✓	ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	16	6.3	5.0	✓	ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	16	6.3	5.0	✓	ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	12	8.3	5.0	✓	ALS QCS3 requirement
Volatile Organic Compounds - Ultra-trace	EP074-UT	1	8	12.5	5.0	✓	ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (1999) Schedule B(3) (Method 102)
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3)
Total Hexavalent Chromium by Alkaline Digestion	EG048	SOIL	USEPA SW846, Method 3060A. Hexavalent chromium is extracted by alkaline digestion. The digest is determined by UV-VIS spectrophotometer following pH adjustment and colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Cyanide By Discrete Analyser	EK026G	SOIL	APHA 21st 4500 CN - C & N. Caustic leach extracts of the sample are distilled with sulphuric acid, converting all CN species to HCN. The distillates are analyzed for CN by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Method 403)
Total Fluoride	EK040T	SOIL	(In-house) Total fluoride is determined by ion specific electrode (ISE) in a solution obtained after a Sodium Carbonate fusion dissolution.
PCB - VIC EPA 448.3 Screen	EP066-EM	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 504)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (1999) Schedule B(3) (Method 506.1)
TPH (C10 - C36) Sum	EP071-SUM	SOIL	In-house: Summation of the results of the semivolatile TPH bands. Results less than the level of reporting contribute zero to the sum.
Volatile Organic Compounds - Ultra-trace	* EP074-UT	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS in partial SIM/Scan mode. Quantification is by comparison against an established multi-point calibration curves. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)
Volatile Organic Compounds - Ultra-trace - Summations	EP074-UT-SUM	SOIL	Summation of MAHs and VHCs
Semivolatile Organic Compounds - Waste Classification	* EP075-EM	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (1999) Schedule B(3) (Method 502)
SVOC - Waste Classification (Sums)	EP075-EM-SUM	SOIL	Summations for EP075 (EM variation)

Preparation Methods	Method	Matrix	Method Descriptions
Alkaline digestion for Hexavalent Chromium	EG048PR	SOIL	USEPA SW846, Method 3060A.
NaOH leach for TCN in Soils	EK026PR	SOIL	APHA 21st ed., 4500 CN- C & N. Samples are extracted by end-over-end tumbling with NaOH.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (1999) Schedule B(3) (Method 202)
Methanolic Extraction of Soils - Ultra-trace.	ORG16-UT	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids - VIC EPA Screen	ORG17A-EM	SOIL	In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL							
Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EP074I: Volatile Halogenated Compounds	1076472-001		Methylene chloride	75-09-2	61.9 %	75.3-131%	Recovery less than lower control limit
Matrix Spike (MS) Recoveries							
EP075A: Phenolic Compounds (Non-halogenated)	EM0902969-003	TP02_0.5-0.6_PART A	2-Nitrophenol	88-75-5	62.1 %	70-130%	Recovery less than lower data quality
							objective

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

Sub-Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP075S: Acid Extractable Surrogates	EM0902969-009	TP05_0.1-0.2_PART A	2.4.6-Tribromophenol	118-79-6	118 %	11-108 %	Recovery greater than upper data
							quality objective
EP075S: Acid Extractable Surrogates	EM0902969-011	TP06_0.1-0.2_PART A	2.4.6-Tribromophenol	118-79-6	109 %	11-108 %	Recovery greater than upper data
							quality objective

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

	WATER WATER	MAIO ALI	LIMINUL	(181.84.84	<u>Aj</u>	·····				It a fragmenter	D. 4. 1	UHA	N OF	cus	IODY									
D FULTON HOGA 30 DANA COURT		Tel: 0418 5; Fax: CONTA E-mail: phil Justin.rhode	CT PHIL RI	nhogan.c	om.au;		· · · · · · · · · · · · · · · · · · ·			Laboratory Lab. Name: Lab. Address Contact Nan Lab. Ref:	s:				lestall R ne Jablo		ngvale, V	(IC 3171		P	ax: reliminary nal Repo	61 3 8549 61 3 8549 Report by: rt by: 15 Ap	9601 8 Apr 09 ril 09	
npled By: PHIL I	RILEY	MWWA Proj			Junau					Project Nam	e: PD400	B Kelletts	Road D	rain We	fland	Webaren 1999				L	ib Quote	No: ME/363	/08	
ecifications:										Yes (tick)	T.						Ana	lysis Requ	iest					(nije se produkcija (da je
Urgent TAT requir	ed? (please circle: 24hr	46hr 3de	ys) <u>URGEN</u>	TEDAVE	DELINARY	DADDOD								₽ ⁸ 3	T T	T			Γ		1	2 2	0	ther
	tee Required? NO	TOTH OUS	iysi <u>unucn</u>		RELIM DI	SAPRUS	rlease				R I			Pb, Hg, EPA 448								6 WEEKS		
ls any sediment la	ayer present in waters to be	excluded from	extractions?	?: N/A							SCREEN			Cu, F								193		
% extraneous mai	erial removed from sample equirements: Please provis	s to be reported	as per NEF	PM 5.1.17:	NO									e a								ΞČ.		
	ax: NO Hardcopy; YES .C			8					MAIL		448.3		Fox	Cr(VI), Zn) as							ľ	OR OR		
: justin.rhodes@	melbournewater.com.au	; and phil.rile	@fuitonho	gan.com.	a(I		-	C	214164) L.	X	ETIN		표	Åg. Cd.							EN	IL F ISP(
l ab					•					· · · · · · · · · · · · · · · · · · ·	1 1 2	V)	and	As, Se,							Roz	IND D		
Lab.	Sample ID	Sampling		Matrix	stream	<u> </u>	Preserv	1	1	Container	EPA BUI	spocas	pHField and pHFox	Metals (Mo, Ni,							KEEP FROZEN	BR DR		
ID		Date	soll	water	sediment	fillfed	acid	ice	other	(No. & type)	66	d S	Ha	Mo.							KE	STORE UNTIL FURTHER INSTRUCTIONS OR FOR 6 PRIOR TO DISPOSAL		
	TP01_0.1_0.2_PartA	1/04/2009	X				i	x		glass jar							T					x		
2	TP01_0.1_0.2_PartB	1/04/2009	X				5.	x		ZIPLOCK BAG			x								x	×		
3	TP01_0.5-0.6_PartA	1/04/2009	X					x		GLASS JAR			<u> </u>	X								X	jł	
×	TP01_0.5-0.6_PartB	1/04/2009	x	1				X	İ	ZIPLOCK BAG			X									x	<u>├</u> ────	
5	TP01_1.0-1.1_PartA	1/04/2009	X				· · · · · · · · · · · · · · · · · · ·	x		GLASS JAR												x	┟━━━━╋	
6_	TP01_1.0-1.1_PartB	1/04/2009	Х					х		ZIPLOCK BAG			X	1							 x	×		
. 7	TP01_2.0-2.1_PartA	1/04/2009	Х					X		GLASS JAR	**						<u> </u>			<u> </u>		x		
X	TP01_2.0-2.1_PartB	1/04/2009	X					Х		ZIPLOCK BAG		······································	X			Envi	ronme	ental D	ivisio	n	X	X	t	
	TP01_3.0-3.1_PartA	1/04/2009	X				÷	х		GLASS JAR	$\overline{\mathcal{X}}$			1	Λι		Mell	oourne				X	+	
01	TP01_3.0-3.1_PartB	1/04/2009	Х					Х		ZIPLOCK BAG			X		8-N	69	Worl	(Ordei	r		X	x	·	
<u> </u>	TP01_4.0-4.1_PartA	1/04/2009	X				i	X		GLASS JAR					-141		1/10	9028	RAS	? '		x		
12	TP01_4.0-4.1_PartB	1/04/2009	,χ					Х		ZIPLOCK BAG			X			ilan i	100	/020	ノイし	,	X	X		
13	TP02_0.1-0.2_PartA	1/04/2009	÷.X					X		GLASS JAR											1	x		
10	TP02_0.1-0.2_PartB	1/04/2009	X					Х		ZIPLOCK BAG											X	X		_
<u> </u>	TP02_0.5-0.6_PartA	1/04/2009	<u> </u>			•	:	Х		GLASS JAR	(\mathbf{x})										1	X		
[6	TP02_0.5-0.6_PartB	1/04/2009	X					Х		ZIPLOCK BAG			X		# 	11 11 					X	x		
12	TP02_1.0-1.1_PartA	1/04/2009	X					x		GLASS JAR				<u> </u>	16	epho	мле∶+	61-3-854	19 960	U '		X		1
18	TP02_1.0-1.1_PartB	1/04/2009	X					X		ZIPLOCK BAG			X				T		1		X	x		
	TP02_2.0-2.1_PartA	1/04/2009	<u>x</u>					Х		GLASS JAR				Į ·								X		
20	TP02_2.0-2.1_PartB	1/04/2009	<u> </u>					X		ZIPLOCK BAG			X	ļļ.							X	X		
22	TP02_3.0-3.1_PartA	1/04/2009	<u> </u>					x	ļ	GLASS JAR				X								x		
	TP02_3.0-3.1_PartB TP03_0.1-0.2_PartA	1/04/2009	X					X		ZIPLOCK BAG			X	ļļ	<u>t.</u> :			<u> </u>			X	X		
20		1/04/2009	<u>X</u>	<u> </u>			<u> </u>	X		GLASS JAR				<u> </u>	Ø			4				X		[
	TP03_0.1-0.2_PartB TP03_0.5-0.6_PartA	1/04/2009	X		· · · · · · · · · · · · · · · · · · ·			X		ZIPLOCK BAG				ļ				- <u>-</u>			<u>×</u>	×		
25		1/04/2009 .	X	┥───┤				X		GLASS JAR				┝──-┡							_	X]
26	TP03_0.5-0.6_PartB	1/04/2009	<u> </u>				·	<u>X</u>		ZIPLOCK BAG	-		X	ļļ.					·		X	X		
257	TP03_1.0-1.1_PartA	1/04/2009	<u>X</u>	₋				X		GLASS JAR	(x)											X		
28	TP03_1.0-1.1_PartB	1/04/2009	X					X		ZIPLOCK BAG			X				1		1		X	X		l

				 		<u> </u>		<u> </u>		Ac.					_							
×	TP03_2.0-2.1_PartA	1/04/2009	x			X	GLASS JAR											ł		Х		
۵۲	TP03_2.0-2.1_PartB	1/04/2009	X			X	ZIPLOCK BAG		1	X				1		I			X	X		
37	TP03_3.0-3.1_PartA	1/04/2009	X			X	GLASS JAR									·				X		
32	TP03_3.0-3.1_PartB	1/04/2009	X			X	ZIPLOCK BAG		1	X									X	X		
33	TP03_4.0_4.1_PartA	1/04/2009	x		i	x	GLASS JAR		1		X									x		
	TP03_4.0_4.1_PartB	1/04/2009	X			X	ZIPLOCK BAG			x		1	1			1			X	x		
- 35	TP04_0.1-0.2_PartA	1/04/2009	X		:	X	GLASS JAR		T							[X		
36	TP04_0.1-0.2_PartB	1/04/2009	Х			X	ZIPLOCK BAG												х	X		
<u>z</u> 7	TP04_0.5-0.6_PartA	1/04/2009	Х		ľ	x	GLASS JAR	(\mathbf{x})												X		
US	TP04_0.5-0.6_PartB	1/04/2009	X			Х	ZIPLOCK BAG	X		X									x	X		
<u> </u>	TP04_1.0-1.1_PartA	1/04/2009	X		÷	X	GLASS JAR					T		<u> </u>	T	Ī				х	····	
440	TP04_1,0-1.1_PartB	1/04/2009	X			x	ZIPLOCK BAG		1	x					1	1			х	X		
n¢\$	TP04_2.0-2.1_PartA	1/04/2009	X			x	GLASS JAR		1			1				1		1		X		
42	TP04_2.0-2.1_PartB	1/04/2009	X			X	ZIPLOCK BAG		1	X				· · · · · · · · · · · · · · · · · · ·					x	Х		
<u></u> ዮን	TP04_3.0-3.1_PartA	1/04/2009	x			X	GLASS JAR							1						X		
ky	TP04_3.0-3.1_PartB	1/04/2009	X			X	ZIPLOCK BAG			X									x	X		
45	TP04_4.0-4.1_PartA	1/04/2009	x			X	GLASS JAR		1		х	1								x		
46	TP04_4.0-4.1_PartB	1/04/2009	X		:	X	ZIPLOCK BAG		1	X									x	X		
4)	TP05_0.1-0.2_PartA	1/04/2009	X			х	GLASS JAR	(x)	1				<u> </u>	**************************************						X		
48	TP05_0.1-0.2_PartB	1/04/2009	X			X	ZIPLOCK BAG												x	X		
45	TP05_0.5-0.6_PartA	1/04/2009	X			X	glass jar		1		X			ĺ						X	**************************************	
59	TP05_0.5-0.6_PartB	1/04/2009	Х		:	х	ZIPLOCK BAG		1	X			1	1					x	x		
<u>n</u>	TP05_1.0-1.1_PartA	1/04/2009	X			Х	GLASS JAR		1											х		
52	TP05_1.0-1.1_PartB	1/04/2009	Х		:	Х	ZIPLOCK BAG			X				1					x	x		
\$3	TP05_2.0-2.1_PartA	1/04/2009	X		:	Х	GLASS JAR		1					1	T				[Х		
54	TP05_2.0-2.1_PartB	1/04/2009	X			Х	ZIPLOCK BAG			X									x	х		
55-	TP05_3.0-3.1_PartA	1/04/2009	Х			X	GLASS JAR						T				1			X		
52	TP05_3.0-3.1_PartB	1/04/2009	X		·	x	ZIPLOCK BAG			X								1	x	х		****
<u> </u>	TP05_4.0-4.1_PartA	1/04/2009	X		:	Х	GLASS JAR											Ť	T	x		
58	TP05_4.0-4.1_PartB	1/04/2009	X			Х	ZIPLOCK BAG			x				I			Ī		x	x		
55	TP05_5.0-5.1_PartA	1/04/2009	X			X	glass jar													X		
60	TP05_5.0-5.1_PartB	1/04/2009	X			X	ZIPLOCK BAG			Х									x	X		
61	TP06_0.1_0.2_PartA	1/04/2009	X			X	GLASS JAR	(x)												X		
62	TP06_0.1-0.2_PartB	1/04/2009	X			Х	ZIPLOCK BAG												x	Х		
63	TP06_0.5-0.6_PartA	1/04/2009	X			Х	GLASS JAR		<u> </u>											X		
66	TP06_0.5-0.6_PartB	1/04/2009	х			x	ZIPLOCK BAG			X									x	Х		
65	TP06_1.0-1.1_PartA	1/04/2009	Х			X	GLASS JAR				x								ľ	X		
66	TP06_1.0-1.1_PartB	1/04/2009	X			Х	ZIPLOCK BAG			X									X	X		
67	TP06_2.0-2.1_PartA	1/04/2009	X	 I	· I	Х	GLASS JAR							I						X		
(8)	TP06_2.0-2.1_PartB	1/04/2009	X			х	ZIPLOCK BAG			Х									x	х		
69	TP06_3.0-3.1_PartA	1/04/2009	X			X	GLASS JAR													X		
70	TP06_3.0-3.1_PartB	1/04/2009	x			х	ZIPLOCK BAG			X									х	х		
71	TP06_4.0-4.1_PartA	1/04/2009	X			Х	GLASS JAR										T			X		
(File)				 		~			. /											<u></u>	h.	<u> </u>
						Ka	(AU)	ϕ	1/04	P/09			2	20 -	- 2	3 <	<i></i>					

·······	······				· · · ·															
72	TP06_4.0-4.1_PartB	1/04/2009	X			Х	ZIPLOCK BAG		х						· ·	X	X	1		
73	TP06_5.0-5.1_PartA	1/04/2009	X			X	GLASS JAR		in the second			T			T		X			
74	TP06_5.0-5.1_PartB	1/04/2009	X		:	Х	ZIPLOCK BAG		X							X	Х			-
75	TP07_0.1-0.2_PartA	1/04/2009	X			X	GLASS JAR						10	1			X			
	TP07_0.1-0.2_PartB	1/04/2009	X			x	ZIPLOCK BAG				1			[.		x	x	1		
77	TP07_0.5-0.6_PartA	1/04/2009	X			X	GLASS JAR	(xJ				1					X			
78	TP07_0.5-0.6_PartB	1/04/2009	X			X	ZIPLOCK BAG		X		1					x	x			
79	TP07_1.0-1.1_PartA	1/04/2009	X			Х	GLASS JAR					1-1-			<u> </u>		X	1		
80	TP07_1.0-1.1_PartB	1/04/2009	X			X	ZIPLOCK BAG		X			1				X	X			\neg
81	TP07_2.0-2.1_PartA	1/04/2009	x			X	GLASS JAR			X					†	<u> </u>	X			
82	TP07_2.0-2.1_PartB	1/04/2009	X		······	X	ZIPLOCK BAG		X	.					1	X	x	1		
\$7	TP07_3.0-3.1_PartA	1/04/2009	x			Х	GLASS JAR							1	┢╼╍╍╋╼		x			
٢ĸ	TP07_3.0-3.1_PartB	1/04/2009	x			x	ZIPLOCK BAG		X			1			┟──┼╴	x	x			
85	TP07_4.0-4.1_PartA	1/04/2009	x			Х	GLASS JAR					1		1			x			-
X6	TP07_4.0-4.1_PartB	1/04/2009	X			Х	ZIPLOCK BAG		X						┢╍╍╼╋╸	X	x			
\$7	TP07_5.0-5.1_PartA	1/04/2009	x			х	GLASS JAR		·····	††-		1 1			++-		x			-
88	TP07_5.0-5.1_PartB	1/04/2009	х			Х	ZIPLOCK BAG		X							X	° х		<u> </u>	
89	DUP01_PartA	1/04/2009	X			Х	GLASS JAR	(\mathbf{x})					•••••••••••••••••••••••••••••••••••••••	-			x			
90	DUP01_PartB	1/04/2009	X			х	ZIPLOCK BAG							+	<u> </u>	x	x			
9.6										<u> </u> +-		1		-						
			-	*			······································		·			Lab Repo	t No.			Esky	D	1 <u>.</u>	ĺ	-
	PHIL RILEY		· J. Au			1/04/2						Sig	ned:					Date:		
Received by:		Signed:			Date:		Received by:						ned:			<u>`</u>		Date:		
- · ·					Ru	(A	r ふつ	0)((64 /09 3.2	iy.	- 0.2	Ŷ								
										<u>)</u> e,	sm Lu. 9	o<	¢							

Ra(AU)

~.1

- a

[File]

need on the	E WATER WATERV		JOINUE (141 ¥ ¥ ¥ ¥ I	<u>Y</u>				· · · · · ·	Laboratory	Detaile	WUM	N OF	0031						Tel		61 3 8549	9600	<u> </u>
O FULTON HOG -30 DANA COUR	AN RT DANDENONG	Tel: 0418 57 Fax: CONTA E-mail: phil justin.rhode	CT PHIL RILI .riley@fultor	nhogan.co	om.au;					Lab. Name: Lab. Address Contact Nam Lab. Ref:	:				estall Ro ne Jablor		vale, VIC	3171		Fax Pre Fin	: liminary al Repor	61 3 8549 61 3 8549 Report by: t by: 15 Ap i t by: 15 Ap i	9601 8 Apr 09 ril 09	
mpled By: PHIL	. RILEY	MWWA Proj								Project Name	: PD400	8 Kelletts	Road D	rain We	tland									
pecifications:			· · · · · · · · · · · · · · · · · · ·							Yes (tick)							Analy	sis Reque	est					
Ument TAT renu	uired? (please circle: 24hr	48hr 3da	VS) URGEN	5 DAY P	REIMRY	RAPPAG								Cu, Pb, Hg, per EPA 448								N N N N N N N N N N N N N N N N N N N	<u> </u>	ther
	intee Required? NO	.0111 000							•		SCREEN			Pb,								6 WEEKS		
	layer present in waters to be										5 K			cu,								ж. 8		
	aterial removed from samples requirements: Please provid	· · · · · · · · · · · · · · · · · · ·		VI 5.1.17; I	NO		-	· · ····		ļ	5.3		×	N), as					1			AL FOR		
	Fax: NO Hardcopy: YES .CS			5					MAIL	<u> </u>	44 P		pHFox	Cd, Cr(VI), Ag, Zn) as								P S S		
	s@melbournewater.com.au;				au					X	ILLETIN 448.3 (2)		Ta Pa	A S							KEEP FROZEN	STORE UNTIL FURTHER INSTRUCTIONS OR FOR 6 PRIOR TO DISPOSAL		
i nh	· · · · · · · · · · · · · · · · · · ·	Constant		Matrix			Preservi	-tion		L Building		3	pHField and	(As, , Se,							FRO	N S P		
Lab.	Sample ID	Sampling	*1	1	stream		T	T	T	Container	EPA BUL (TABLE)	spocas		Metals (Mo, Ni,							d H	STR NOR		
ID		Date	soil	water	sediment	filt'ed	acid	ice	other	(No. & type)	ЪE	<u>5</u>	<u> </u>	<u>Š</u> Š				<u></u>			¥.	535		
	TP01_0.1_0.2_PartA	1/04/2009	Х				l	X		GLASS JAR			1									X		
	TP01_0.1_0.2_PartB	1/04/2009	x			[x		ZIPLOCK BAG			x	·							x	x		
	TP01_0.5-0.6_PartA	1/04/2009	x	1	İ	1		X		GLASS JAR			1	x				1-1				x		
	TP01_0.5-0.6_PartB	1/04/2009	X	1		1		X		ZIPLOCK BAG			X		· •			1			X	X		
	TP01_1.0-1.1_PartA	1/04/2009	X			[x		GLASS JAR			1		t-			t-t			-	X		
	TP01_1.0-1.1_PartB	1/04/2009	X			1		X		ZIPLOCK BAG			x					1			x	x		
	TP01_2.0-2.1_PartA	1/04/2009	X	1				x		GLASS JAR			T					1 1				x		
	TP01_2.0-2.1_PartB	1/04/2009	X	1				x	ţ	ZIPLOCK BAG			×	1				1			X	×		
	TP01_3.0-3.1_PartA	1/04/2009	X					x	l	GLASS JAR	X		1			·		T	1			X		
	TP01_3.0-3.1_PartB	1/04/2009	X			[·	X		ZIPLOCK BAG			X		ľ			T			X	X		
	TP01_4.0-4.1_PartA	1/04/2009	X	Ι		1		x		GLASS JAR								T				x		
······	TP01_4.0-4.1_PartB	1/04/2009	<u>,</u> ۲					X		ZIPLOCK BAG			X								X	X		
	TP02_0.1-0.2_PartA	1/04/2009	X					X	[GLASS JAR	l											X		
	TP02_0.1-0.2_PartB	1/04/2009	X					x		ZIPLOCK BAG											X	X		
	TP02_0.5-0.6_PartA	1/04/2009	X					X		GLASS JAR	X				· .							X		
	TP02_0.5-0.6_PartB	1/04/2009	X					x		ZIPLOCK BAG			X		:						X	X		
	TP02_1.0-1.1_PartA	1/04/2009	X					X		GLASS JAR				<u> </u>								X		
	TP02_1.0-1.1_PartB	1/04/2009	X					X		ZIPLOCK BAG			X								X	X		
	TP02_2.0-2.1_PartA	1/04/2009	X					x		GLASS JAR												×		
	TP02_2.0-2.1_PartB	1/04/2009	Х	1				X		ZIPLOCK BAG			X								X	X		
	TP02_3.0-3.1_PartA	1/04/2009	X					x		GLASS JAR				X					1			X		
	TP02_3.0-3.1_PartB	1/04/2009	X					X		ZIPLOCK BAG			X		5				Ţ		X	X		
	TP03_0.1-0.2_PartA	1/04/2009	X					X		GLASS JAR												X		
	TP03_0.1-0.2_PartB	1/04/2009	X					X		ZIPLOCK BAG											X	X		
	TP03_0.5-0.6_PartA	1/04/2009 .	X	1				X		GLASS JAR												X		
	TP03_0.5-0.6_PartB	1/04/2009	X			ł		X		ZIPLOCK BAG			X								X	X		
	TP03_1.0-1.1_PartA	1/04/2009	X					X		GLASS JAR	X											X		
	TP03_1.0-1.1_PartB	1/04/2009	X	1				X		ZIPLOCK BAG	ļ.		X				1	IT	T		X	Х	I	

Richard milalia. 3-20 m

~

TP03_2.0-2.1	PartA 1,	/04/2009	X			1		X	GLASS JAR					Ì	-		Ī			1		X	[T
TP03_2.0-2.1	PartB 1/	/04/2009	X	1		†	1	x	ZIPLOCK BAG		1										X	X	<u> </u>	+
TP03_3.0-3.1		/04/2009	X	1	W		<u>+</u> +-	x	GLASS JAR		-					<u></u>				1		X		-
TP03_3.0-3.1		/04/2009	X			1		x	ZIPLOCK BAG				}						-	-	x	X		+
TP03_4.0_4.1		/04/2009	X			+		x	GLASS JAR				x				-+			-		X	<u> </u>	+
TP03_4.0_4.1		/04/2009	X	<u>†</u> †			 -	x	ZIPLOCK BAG		1		ļ							-	X	X		╋
TP04_0.1-0.2	······	/04/2009	X					x	GLASS JAR													X		
TP04_0.1-0.2		/04/2009	X			<u> </u>	† †	x	ZIPLOCK BAG		-		[-	-	x	X	<u> </u>	+
TP04_0.5-0.6		/04/2009	X	<u> </u>		1		x	GLASS JAR	x												X		+
TP04_0.5-0.6	·····	/04/2009	X			 	<u> </u>	x	ZIPLOCK BAG		+	×								+	x	X	<u></u>	
TP04_1.0-1.1_		/04/2009	X	<u> </u>		<u> </u>		x	GLASS JAR								<u> </u>		_			x		+
TP04_1.0-1.1		/04/2009	X				┟────┼	x	ZIPLOCK BAG		-			h						+	x	X	<u> </u>	+
TP04_2.0-2.1		/04/2009	X				┟───┠	x	GLASS JAR	<u>├</u> ── <u>├</u> ──							-				<u> </u>	X		+
TP04_2.0-2.1_		/04/2009	<u>X</u>				<u>├</u>	x	ZIPLOCK BAG		-	x			\rightarrow			-			x	x	<u> </u>	+
TP04_3.0-3.1		/04/2009	X	<u> </u>			<u>├</u> ──	x	GLASS JAR	└─── <u>↓</u> └──										+		X		+
TP04_3,0-3.1		/04/2009	X	<u> </u>			├	x	ZIPLOCK BAG		+	x					<u> </u>			+	x	x	<u> </u>	+
TP04_4.0-4.1_		04/2009	X			<u> </u>	<u>├</u>	x	GLASS JAR		+		x									X	ļ	+
TP04_4.0-4.1		04/2009	X	<u>}</u>		 	<u> </u>	X	ZIPLOCK BAG			x								+	x	X	<u> </u>	+
TP05_0.1-0.2_		/04/2009	X	1		<u> </u>	 -	x	GLASS JAR	x											· · ·	X	<u> </u>	+
TP05_0.1-0.2	······	04/2009	X					x	ZIPLOCK BAG		+			 _						+	x	X	<u> </u>	+
TP05_0.5-0.6_		04/2009	X					x	GLASS JAR		╂		x						_	+		X	<u> </u>	+
TP05_0.5-0.6		04/2009	X					x	ZIPLOCK BAG		+										x	X		+
TP05_1.0-1.1_		04/2009	X					x	GLASS JAR										+			X		+-
TP05_1.0-1.1_		04/2009	X				<u> </u>	x	ZIPLOCK BAG			x								~	x	X		+
TP05_2.0-2.1		04/2009	X					xt	GLASS JAR		1							_		1		X	<u> </u>	+
TP05_2.0-2.1_	PartB 1/	04/2009	X				t-	x	ZIPLOCK BAG			X							+		X	X		1
TP05_3.0-3.1_	PartA 1/	04/2009	X	1				x	GLASS JAR								-		-	-		х		+
TP05_3.0-3.1_		04/2009	x					x	ZIPLOCK BAG			X									x	х		†
TP05_4.0-4.1_	PartA 1/	04/2009	X	h	······			x	GLASS JAR													x		1
TP05_4.0-4.1_	PartB 1/	04/2009	X		·····			x	ZIPLOCK BAG			X						_	+	1	x	х		+
TP05_5.0-5.1_		04/2009	x	 †		 		x	GLASS JAR		1									1	 	X		1
TP05_5.0-5.1		04/2009	X	<u> </u>				x	ZIPLOCK BAG	Ţ.	1	X		<u> </u>	-				1	1	х	X		\uparrow
TP06_0.1_0.2		04/2009	x				<u> </u>	x	GLASS JAR	X	1									<u>†</u>	† †	X		†
TP06_0.1-0.2_		04/2009	x				┟───┼	x	ZIPLOCK BAG	<u> </u>									+	1	x	χ		1
TP06_0.5-0.6		04/2009	X				l l	x	GLASS JAR								-		-	1	<u> </u>	X		1
TP06_0.5-0.6_		04/2009	X	+			<u> </u>	x	ZIPLOCK BAG		<u> </u>	x								1	X	X		1
TP06_1.0-1.1_		04/2009	x	<u>├</u>			<u> </u> -	x	GLASS JAR		<u>†</u>		x							1	<u> </u>	X		1
TP06_1,0-1.1_	~~~ ~	04/2009	X				<u>├</u> ─── <u>├</u> ─	x	ZIPLOCK BAG		1	x								†	X	X		1
TP06_2.0-2.1_		04/2009	x	 			<u> </u>	x	GLASS JAR		1									1		x		1
TP06_2.0-2.1_	~	04/2009	X				 -	x	ZIPLOCK BAG	······	1	X					_		1	1	X	X		1
TP06_3.0-3.1_		04/2009	<u>x</u>				<u> </u>	x	GLASS JAR		1									1		x		+
TP06_3.0-3.1_	·····	04/2009	X	 			<u>├</u>	x	ZIPLOCK BAG	· · ·	†	x									x	X		\mathbf{T}
TP06_4.0-4.1_		04/2009	X			[x	GLASS JAR		+											x		1

Ra(A12) 01/04/09

20-72-

		orginou.		<u> </u>		(A)	47	01(C	4 /09 3:2	l. Loph	¢		<u>, , , , , , , , , , , , , , , , , , , </u>				
Relinquished by: Received by:	PHIL RILEY	Signed:	· J. A.		Date: Date:	1/04/200	9 Relinquished Received by:	y:				Signed		<u>I</u>		Date: Date:	
		1	J								Lab R	eport No.		Esky	D		
······	DUP01_PartB	1/04/2009	<u> </u>			X	ZIPLOCK BAG			<u> </u>				<u> </u>	<u> </u>		<u> </u>
	DUP01_PartA	1/04/2009	X			x	GLASS JAR	X							X	<u> </u>	
	TP07_5.0-5.1_PartB	1/04/2009	X			X	ZIPLOCK BAG		X					X	<u>`Х</u>		
	TP07_5.0-5.1_PartA	1/04/2009	x			x	GLASS JAR								Х		
	TP07_4.0-4.1_PartB	1/04/2009	x			X	ZIPLOCK BAG	1	X					X	X		
	TP07_4.0-4.1_PartA	1/04/2009	x			X	GLASS JAR		l						X		
	TP07_3.0-3.1_PartB	1/04/2009	X			X	ZIPLOCK BAG							X	X	1	
	TP07_3.0-3.1_PartA	1/04/2009	x			x	GLASS JAR								X		
	TP07_2.0-2.1_PartB	1/04/2009	x			x	ZIPLOCK BAG								x		
	TP07_2.0-2.1_PartA	1/04/2009	x			x	GLASS JAR			x	<u> </u>				X		
	TP07_1.0-1.1_PartB	1/04/2009	X		<u> </u>	$\frac{x}{x}$	ZIPLOCK BAG								X		┢───╂─
	TP07_0.5-0.6_PartB TP07_1.0-1.1_PartA	1/04/2009 1/04/2009	X			X	GLASS JAR		^^					^	x	+	┢╼╍╌╉ー
	TP07_0.5-0.6_PartA	1/04/2009	X X		<u> </u>	X	GLASS JAR ZIPLOCK BAG	X'	x	┼──┼──				x	x	<u> </u>	┢──╋
	TP07_0.1-0.2_PartB	1/04/2009	X			X	ZIPLOCK BAG			<u> </u>				X	X X		┟───╄╸
	TP07_0.1-0.2_PartA	1/04/2009	X			X	GLASS JAR	-				ŝ			X		<u> </u>
	TP06_5.0-5.1_PartB	1/04/2009	X		· · · · · · · · · · · · · · · · · · ·	x	ZIPLOCK BAG		X	<u> </u>				<u>×</u>	X	<u> </u>	<u> </u>
	TP06_5.0-5.1_PartA	1/04/2009	x			X	GLASS JAR			<u> </u>					X		<u> </u>
	TP06_4.0-4.1_PartB	1/04/2009	X		<u> </u>	X	ZIPLOCK BAG		X				ł	X	X		j

3

÷

(File)

	E WATER WATER	MAIO ALI		IVI VV VV	<u></u>					Laboratory	Details	GHA	N OF	008	100)		<u> </u>		<u> </u>		<u>- Int (</u> Tel:	JE	EM04			
FULTON HOGA		Tel: 0418 57								Lab. Name:	ĺ			ALS							Fax:		61 3 8549	9601		
N DRIVN GOUR		E-mail: phil	CT PHIL RILI	hogan.c			1			Lab. Address Contact Nan					estall F 1e Jabk	id, Spring Inskas	jvale,	VIC 317	1				Report by: 8 by: 15 Apri			
pied By: PHIL	RILEY		s@melbour	newater.r						Lab. Ref:		0 1/ 11-4-	Dar-t P										o: ME/363/			
ecifications:		WWWWW PIUJ		09				<u></u>		Project Nam	e: PD400	8 Kelletts	Road D	rain Wei	tiand		ân	alysis R	oninot						مربط المربط	
	·						:			Yes (tick)			ľ	Hg, 448		·	T		Cquee!	1	<u> </u>	T	<u>्</u> ष्ट	C	Other	
	red? (please circle: 24hr tee Required? NO	48hr 3da	iys) <u>URGENT</u>	5 DAY P	RELIM BY	BAPR09	PLEASE				Z			Pb, H EPA 4									WEEKS		Π	
s any sediment la	ayer present in waters to be	excluded from	extractions?:	N/A		••••••••••••••••••••••••••••••••••••••	······································				SCREEN			Cu, P												
6 extraneous ma	terial removed from samples	s to be reported	l as per NEPI	1 5.1.17:	NØ						ы В С			0 č									FOR	~		
	equirements: Please provid fax: NO Hardcopy: YESCS										448.3		Fox	No.								l j	OR OR	S.A	۱A I	ខ្លែក /
justin.rhodes(ax. No Hardcopy. res .c.	; and phil.rile	y@fultonhog	an.com.i	an				EMAIL.	X	ABLE 2)		pHField and pHFox	(As, Cd, Cr(VI), Se, Ag, Zn) as I								KEEP FROZEN	STORE UNTIL FURTHER INSTRUCTIONS OR FOR 6 PRIOR TO DISPOSAL	es.C	12	Ņ
Lab.		Sampling		Matrix		[Preserv	ation		Container	E BU	SAS	eld "	S S						ļ		E.	E C C C	1	i i	
ID .	Sample ID	Date	8011	water	stream sediment	filt'ed	acid	ice	other	(No. & type)	EPA	SPOCAS	iHH	Metals Mo, Ni,								ji ji	NST OF			
1	TP01_0.1_0.2_PartA	1/04/2009	X				1.1	x		GLASS JAR			<u> </u>				╈	-+-			1		X		†	
Ŷ	TP01_0.1_0.2_PartB	1/04/2009	X					x		ZIPLOCK BAG			x							-	+	X	x			
4	T <u>R010.5-0.6</u> BartA	4/04/2008	<u>Х</u>	-				_χ_		CLASS JAR			<u> </u>								-	++	x			
Ý	TP01_0.5-0.6_PartB	1/04/2009	X					X		ZIPLOCK BAG		·······	X								-	x	X			
5	TP01_1.0-1.1_PartA	1/04/2009	X				i.	Х	1	GLÁŚS JAR			<u> </u>	┼──┤		\checkmark	m	ne	AF	-1-	1	++	X			
6	TP01_1.0-1.1_PartB	1/04/2009	X					X	1	ZIPLOCK BAG			X			\rightarrow				ZhG	木	X	x			
7	TP01_2,0-2.1_PartA	1/04/2009	x					x	1	GLASS JAR									<u> </u>		+		x			
*	TP01_2.0-2.1_PartB	1/04/2009	X		1.1			х	ŀ	ZIPLOCK BAG			X	1	/	Envir	onm	ental	Divi	sion		X	x			
	TP01_3.0-3.1_PartA	1/04/2009	<u> </u>				on Dall Winnerski Arcan	X_	ļ	GLASS JAR	KJ.		1		Λ_{i}		Mel	bour	ne	\sim			X			•
0)	TP01_3.0-3.1_PartB	1/04/2009	X					X		ZIPLOCK BAG			X		6th	09	Wor	k Or	ter 🕻	<		X	X			
<u> </u>	TP01_4.0-4.1_PartA	1/04/2009	X					X		GLASS JAR			1		>14	ÈN	١N	<u>on:</u>	282	18	-		X			
12	TP01_4.0-4.1_PartB	1/04/2009	,χ					X		ZIPLOCK BAG			X			L. f W				TU		X	x			
13	TP02_0.1-0.2_PartA	1/04/2009	X					X		GLASS JAR													x			
10	TP02_0.1-0.2_PartB	1/04/2009	X					X		ZIPLOCK BAG												X	X	······		
<u> </u>	TPD2_0 5.0.6_PagA	4/04/2009	<u> </u>					×		- OLAGS-JAR	(\mathbf{x})				JIII								x			
[6	TP02_0.5-0.6_PartB	1/04/2009	X					X		ZIPLOCK BAG			X									X	X			
12	TPD2_1.0-1.1_PartA	1/04/2009	X					X	 	OLASS JAR			L	Ŀ	X	elephon	ie : 4	-01-3-8	5049 9	1000			x			
	TP02_1.0-1.1_PartB	1/04/2009	, Х					X		ZIPLOCK BAG			Χ.	 							Ē	X	X			
		1/04/2009	X					X	 	GLASS JAR				ļļ			Y_						X			
20	TP02_2.0-2.1_PartB	1/04/2009	X					X	 	ZIPLOCK BAG			X	 						ect f		X	X			
22	TP02_3.0-3.1_PautA	1/04/2009	X					X		GLASS JAR			·	X -+			_ <u> </u> _	44	Ξhaa	5402	<u>q69</u>		<u>x</u>			
	TP02_3.0-3.1_PartB TP03_0.1-0.2_PartA	1/04/2009	X					<u>X</u>		ZIPLOCK BAG			X	-	- <u>5</u>		Å-	!``	-		Ļ]	X	X			
20	TP03_0.1-0.2_PartB	1/04/2009	X				:" 	<u>×</u>		GLASS JAR					Ø	\dashv					<u> </u>	 	×			
	TP03_0.1-0.2_Pans	1/04/2009 1/04/2009	×					X		ZIPLOCK BAG		_		-		4-			_		.	X	X			
25		1/04/2009	X X					<u>x</u>		GLASS JAR		[-4					_	 	<u> </u>	X	·		
	····	1/04/2009	× ————————————————————————————————————					X		ZIPLOCK BAG	Δ		X	$ \rightarrow $					_		┢───┤	X	<u> </u>			
27		1/04/2009	<u>х</u>					X		-GLASS-JAR-	-(×)-		42							_	╞╌┥	<u> </u>	X			
<u>(Filig)</u>	is vo_tort.t_raits	1004/2008	<u>^</u>				l	<u> </u>	L	ZIPLOCK BAG			X	LL			L			<u>. </u>	1	X				

¥									I		Ø1,														
29	TP03_2.0-2.1_PartA	1/04/2009	x		[X	GLASS JAR	T +	Ī]	T			ľ				[1		X	T		-7
2	TP03_2.0-2.1_PartB	1/04/2009	X				X	ZIPLOCK BAG	. .	1	X	1			[11			1	x	X	†	1-1-7	······
31	TP03_3.0-3.1_PartA	1/04/2009	X				x	GLASS JAR	1		1									1		X	1		
32	TP03_3.0-3.1_PartB	1/04/2009	X				X	ZIPLOCK BAG			X										x	Х	1		
	TP03_4.0_4.1_PartA	4/94/2099-	¥				- X -	GLASS JAR	алански старитта			- X \]		X			
<u> </u>	TP03_4.0_4 1_PartB	1/04/2009	<u>x</u>	ļ			X	ZIPLOCK BAG		-	X		Δ		 		<u> </u>				X	X			
	TP04_0.1-0.2_PartA	1/04/2009	X	<u> </u>			X	GLASS JAR				<u> </u>			ļ					ļ	ļ	Х	Ļ		
	TP04_0.1-0.2_PartB	1/04/2009	X	<u> </u>			X	ZIPLOCK BAG		ļ		. 			ļ					ļ	X	X			
	TP04_0.5-0.6_PartB	1/04/2009					×		(2					<u> </u>						ļ		X	<u> </u>	<u> </u>	
25 24	TP04_1.0-1.1_PartA	1/04/2009	X X	<u> </u>			X	ZIPLOCK BAG			X		\mathbf{A}							ļ	X	<u>X</u>		+	
	TP04_1.0-1.1_PartB	1/04/2009	X	<u> </u>			X	GLASS JAR	 					<u>.</u>	<u> </u>			·				X	_	┿╼╼┿	
	TP04_2.0-2.1_PartA	1/04/2009	X				X X	ZIPLOCK BAG GLASS JAR		<u> </u>	X	<u> </u>		$\overline{}$	<u> </u>						<u> </u>	<u>X</u>	<u> </u>		
	TP04_2.0-2.1_PartB	1/04/2009	× ×				x	ZIPLOCK BAG		 	x				<u> </u>							<u>X</u>		╄	
¥3	TP04_3.0-3.1_PartA	1/04/2009	x				x	GLASS JAR			+					<u>}</u>					X	<u>х</u> х	<u> </u>	<u> </u>	_
¥γ	TP04_3.0-3.1_PartB	1/04/2009	x	<u> </u>	·····		x	ZIPLOCK BAG		······································	X							*******			x	X	<u> </u>	+	
		1/04/2009	X				x	GLASS JAR	بنيا مىرە - مە							<u> </u>						x	<u> </u>	+	
46	TP04_4.0-4.1_PartB	1/04/2009	x				X	ZIPLOCK BAG		 	x				8794	1	m	Ne	-1 F	5	x			┝╼┾╴	
	TP05_0.1-0.2_PortA	4,04/2009-	X				X	- GLAIDS JAR-	- 7 *)-	N.N. SEQUENCE MANAGEMENT										969		x		┢╼╼┾╸	
48	TP05_0.1-0.2_PartB	1/04/2009	X				x	ZIPLOCK BAG		h	1		i					- <u>``</u>	Sector.		x	X			
_4 <u>5</u>	TP05_0.5-0.6_PartA	1/04/2009	<u>x</u>				X	GLASS JAR	nations and a second							1 1						X			
57	TP05_0.5-0.6_PartB	1/04/2009	X		÷		x	ZIPLOCK BAG			Х		1		ļ	7					x	Х			
2	TP05_1.0-1.1_PartA	1/04/2009	X				X	GLASS JAR							//							X			
- 32	TP05_1.0-1.1_PartB	1/04/2009	X				х	ZIPLOCK BAG			X				\square						X	Х			
\$3	TP05_2.0-2.1_PartA	1/04/2009	X				X	GLASS JAR							1							X			
<u>\$7</u>	TP05_2.0-2.1_PartB	1/04/2009	X	L		1	X	ZIPLOCK BAG	· · · · · · · · · · · · · · · · · · ·		X										х	X			
55	TP05_3.0-3.1_PartA	1/04/2009	X				<u> </u>	GLASS JAR						/]								X			
58	TP05_3.0-3.1_PartB	1/04/2009	X				X	ZIPLOCK BAG			X		k								X	Х		╞───┝╸	
	TP05_4.0-4.1_PartA TP05_4.0-4.1_PartB	1/04/2009 1/04/2009	X		·····		<u>×</u>	GLASS JAR ZIPLOCK BAG			~~~~~~		/4									X		 - -	
53	TP05_5.0-5.1_PartA	1/04/2009	× ×				X X	GLASS JÄR			X		$ \neq $	$\frac{1}{2}$							X	X		┟───┟─	
	TP05_5.0-5.1_PartB	1/04/2009	X				x	ZIPLOCK BAG	<u>.</u>	<u></u>	x		<i>/</i>	4								X			
-61-	TPOS_0.1_0.2_PortA	1/94/2009	X					GLASS-JAR-	\overline{X}				<u>i</u>								<u>x</u>	X X		┝──┼─	
- FC		1/04/2009	X			-	x	ZIPLOCK BAG	<u> </u>				\dashv								x	x		 	
63	TP06_0.5-0.6_PartA	1/04/2009	x				x	GLASS JAR	1				+								-+	X		\vdash	-
64	TP06_0.5-0.6_PartB	1/04/2009	X	· · ·			x	ZIPLOCK BAG			X		/		····-						x	X			
-66		1/04/2009					- <u>x</u>					- <u>*</u> 1										x		<u> </u>	-
66	TP06_1.0-1.1_PartB	1/04/2009	x				x	ZIPLOCK BAG			x							t		1	x	X		_ _	-
67	TP06_2.0-2.1_PartA	1/04/2009	X				x	GLASS JAR		'''''''''''''''''''''''''''''''''''''	 						t-					x		_	-
83	TP06_2.0-2.1_PartB	1/04/2009	X				х	ZIPLOCK BAG	1		X										x	х			-
69	TP06_3.0-3.1_PartA	1/04/2009	X				x	GLASS JAR														x			1
70		1/04/2009	X				X	ZIPLOCK BAG			X										X	x			1
71	TP06_4.0-4.1_PartA	1/04/2009	<u> </u>				X	GLASS JAR														X			
(File)							p_	~ A I 3	~	1.	1. 0				~			¢							
							na	(AU)	φ_{l}	1041	109	•			2		2	30							

.

The second second second second second second second second second second second second second second second se																											
72	TP06_4.0-4.1_PartB	1/04/2009	Х				T	X	Z	IPLOCK BAG			X			Τ	1			T	Π	<u> </u>	X	X	1		
73	TP06_5.0-5.1_PartA	1/04/2009	X				1	X		GLASS JAR		1				1	1							x			1
74	TP06_5.0-5.1_PartB	1/04/2009	X					X	Z	IPLOCK BAG			X				1			<u>†</u>	1	<u></u>	X	X	+		
75	TP07_0.1-0.2_PartA	1/04/2009	X					x		GLASS JAR				-	1	1	1		123 123	†	<u>†</u>			X	+	+	
76	TP07_0.1-0.2_PartB	1/04/2009	X					X	Z	IPLOCK BAG		1			1	1	1			<u> </u>	<u> </u>		x	x	+	-	
- 39		1/04/2000	×					-X		GLASS JAR	7×c					1	<u> </u>			†	 	 		x	+	\vdash	
78	TP07_0.5-0.6_Part8	1/04/2009	x					x	ZI	IPLOCK BAG		-	X		\mathbf{T}	†				<u> </u>		┢──┤	x	x	·	┢──┼	
79	TP07_1.0-1.1_PartA	1/04/2009	x					x		GLASS JAR	<u>├</u>	1	-		+	k					<u> </u>	┝───┥	<u> </u>		-	┢──╋	····
×e.	TP07_1.0-1.1_PartB	1/04/2009	x					x	21	IPLOCK BAG		1	x		+	<u> </u>					<u> </u>	<u>├</u> ───┤	x	x		┢╼╼┝	
Stores		1/04/2009		-	an an an an an an an an an an an an an a			-x-		OLASS-JAR-				X		1	\sum				0,			X			
82	TP07_2.0-2.1_PartB	1/04/2009	X	†		 		$\frac{1}{x}$	ZI	PLOCK BAG		+	x		+		<u> </u>	> m) Ovíže	1012	Fat	₩H	x	X		┍╼╼╋	
٢.	TP07_3.0-3.1_PartA	1/04/2009	x	╞╼╼╼┼				x		GLASS JAR		+-			+	<u> </u>		1 -	inne	ho	 		$\hat{-}$	X	<u>+</u>	 -	
(K	TP07_3.0-3.1_PartB	1/04/2009	X					x	ZI	PLOCK BAG			x		-				<u> </u>			┢───┥	x	X	 		
85	TP07_4.0-4.1_PartA	1/04/2009	X					x		GLASS JAR		+		-	+		$\vdash \mathcal{H}$	·			<u>├</u>	┝──┥		<u> </u>	<u> </u>		
XG	TP07_4.0-4.1_PartB	1/04/2009	X	<u> </u>				x	ZI	PLOCK BAG			x		+		\neq						x	X	<u> </u>		
\$7	TP07_5.0-5.1_PartA	1/04/2009	X					x		GLASS JAR		-				-7						┝───┤	-	<u>x</u>	<u> </u>		
88	TP07_5.0-5.1_PartB	1/04/2009	х					x		PLOCK BAG			x	-	+	$\vdash f$				<u>├</u> ───┤		┢───┨	x	× ×			
~ -89		1/04/2009						_x _‡		JLASS JAR	7					/					<u> </u>	h	\rightarrow +	<u> </u>	┝		
90	DUP01_PartB	1/04/2009	X					x		PLOCK BAG	C/	+			$+-\prime$					┝───┦	┝──┤	┢╍╍╍┥	x	<u> </u>	╄		
- Ar		and the second sec						-+						-	+								<u></u>	×	<u> </u>		
<u> </u>				LL_			L	L	<u> </u>	L				1	1	L	Lab Re	port N			Ļ	<u> </u>			Ĺl		
Relinguished by: P	HIL RILEY	Signed:	· J. Mar	7		Da		04/200		elinguished I	IA												mervy in				
Received by:		Signed:				Da		04/201		sceived by:	cy;							Signed Signed						the second second second second second second second second second second second second second second second s	Date:		
waynesses and the second second second second second second second second second second second second second s								_	inc	JOSIVOU DY.								oigneo			-	,			Date:		

" Starter

RU(AU)

01104/09. 32200 20-23.00

٨d

1

[File]

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	EM0902848	Page	: 1 of 10
Client	: FULTON HOGAN	Laboratory	: Environmental Division Melbourne
Contact	: MR JUSTIN RHODES	Contact	: Steven McGrath
Address	: 10-30 DANA COURT DANDENONG VIC 3175	Address	: 4 Westall Rd Springvale VIC Australia 3171
E-mail	: justin.rhodes@melbournewater.com.au	E-mail	: steven.mcgrath@alsenviro.com
Telephone	:	Telephone	: +61-3-8549 9600
Facsimile	:	Facsimile	: +61-3-8549 9601
Project	: PD4008 - Kelletts Road Drain Wetland	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 01-APR-2009
Sampler	: PR	Issue Date	: 10-APR-2009
Site	:		
		No. of samples received	: 75
Quote number	: ME/363/08	No. of samples analysed	: 38

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ΝΑΤΑ	NATA Accredited Laboratory 825 This document is issued in	<i>Signatories</i> This document has been electronically carried out in compliance with procedures sp	o y	indicated below. Electronic signing has been
	accordance with NATA	Signatories	Position	Accreditation Category
	accreditation requirements.	Kim McCabe	Senior Inorganic Chemist	Inorganics
WORLD RECOGNISED ACCREDITATION	Accredited for compliance with ISO/IEC 17025.			

Environmental Division Melbourne Part of the ALS Laboratory Group 4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- pH Field/pH Fox analysis conducted by ALS Brisbane, NATA Site No. 818.
- pH FOX Reaction Rate: 1 Slight; 2 Moderate; 3 Vigorous; 4 Very Vigorous
- This is a split batch to EM0902969

Sub-Matrix: SOIL		Cli	ent sample ID	TP01_0.1-0.2_PartB	TP01_0.5-0.6_PartB	TP01_1.0-1.1_PartB	TP01_2.0-2.1_PartB	TP01_3.0-3.1_PartB
	C	lient sampli	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902848-002	EM0902848-004	EM0902848-006	EM0902848-008	EM0902848-010
EA003 :pH (field/fox)								
pH (F)		0.1	pH Unit	5.8	7.1	7.4	7.6	7.4
pH (Fox)		0.1	pH Unit	2.4	4.3	5.3	7.6	5.8
Reaction Rate		1	Reaction Uni	3	3	2	1	2

Sub-Matrix: SOIL		Cli	ent sample ID	TP01_4.0-4.1_PartB	TP02_0.5-0.6_PartB	TP02_1.0-1.1_PartB	TP02_2.0-2.1_PartB	TP02_3.0-3.1_PartB
	Cl	lient sampl	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902848-012	EM0902848-016	EM0902848-018	EM0902848-020	EM0902848-022
EA003 :pH (field/fox)								
pH (F)		0.1	pH Unit	8.2	5.7	5.6	5.5	6.6
pH (Fox)		0.1	pH Unit	6.0	3.2	3.0	3.7	6.5
Reaction Rate		1	Reaction Uni	2	2	3	1	4

Sub-Matrix: SOIL		Cli	ent sample ID	TP03_0.5-0.6_PartB	TP03_1.0-1.1_PartB	TP03_2.0-2.1_PartB	TP03_3.0-3.1_PartB	TP03_4.0-4.1_PartB
	C	lient sampli	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902848-026	EM0902848-028	EM0902848-030	EM0902848-032	EM0902848-034
EA003 :pH (field/fox)								
pH (F)		0.1	pH Unit	6.2	7.2	7.2	7.4	7.5
pH (Fox)		0.1	pH Unit	3.8	5.2	5.8	6.2	7.7
Reaction Rate		1	Reaction Uni	3	2	2	2	1

Sub-Matrix: SOIL		Cli	ent sample ID	TP04_0.5-0.6_PartB	TP04_1.0-1.1_PartB	TP04_2.0-2.1_PartB	TP04_3.0-3.1_PartB	TP04_4.0-4.1_PartB
	Cl	lient sampli	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902848-038	EM0902848-040	EM0902848-042	EM0902848-044	EM0902848-046
EA003 :pH (field/fox)								
pH (F)		0.1	pH Unit	6.5	7.4	7.4	7.4	7.5
pH (Fox)		0.1	pH Unit	4.1	5.4	6.0	7.3	6.5
Reaction Rate		1	Reaction Uni	3	1	2	1	2

Sub-Matrix: SOIL		Client sample ID		TP05_0.5-0.6_PartB	TP05_1.0-1.1_PartB	TP05_2.0-2.1_PartB	TP05_3.0-3.1_PartB	TP05_4.0-4.1_PartB
	C	lient sampli	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902848-050	EM0902848-052	EM0902848-054	EM0902848-056	EM0902848-058
EA003 :pH (field/fox)								
pH (F)		0.1	pH Unit	6.2	6.9	6.9	6.9	7.1
pH (Fox)		0.1	pH Unit	3.3	4.7	5.7	6.9	5.4
Reaction Rate		1	Reaction Uni	3	2	2	2	2

Sub-Matrix: SOIL		Client sample ID		TP05_5.0-5.1_PartB	TP06_0.5-0.6_PartB	TP06_1.0-1.1_PartB	TP06_2.0-2.1_PartB	TP06_3.0-3.1_PartB
	C	lient sampli	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0902848-060	EM0902848-064	EM0902848-066	EM0902848-068	EM0902848-070
EA003 :pH (field/fox)								
pH (F)		0.1	pH Unit	7.3	6.6	6.5	6.7	7.0
pH (Fox)		0.1	pH Unit	5.1	3.6	3.9	7.2	5.1
Reaction Rate		1	Reaction Uni	1	3	2	1	2

Sub-Matrix: SOIL		Client sample ID		TP06_4.0-4.1_PartB	TP06_5.0-5.1_PartB	TP07_0.5-0.6_PartB	TP07_1.0-1.1_PartB	TP07_2.0-2.1_PartB
	C	Client sampling date / time		01-APR-2009 15:00				
Compound	CAS Number	LOR	Unit	EM0902848-072	EM0902848-074	EM0902848-078	EM0902848-080	EM0902848-082
EA003 :pH (field/fox)								
pH (F)		0.1	pH Unit	7.8	7.6	6.5	7.4	7.6
pH (Fox)		0.1	pH Unit	5.5	5.5	3.7	5.3	5.5
Reaction Rate		1	Reaction Uni	2	2	3	2	2

Sub-Matrix: SOIL		Client sample ID		TP07_3.0-3.1_PartB	TP07_4.0-4.1_PartB	TP07_5.0-5.1_PartB		
	Cl	lient sampl	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00		
Compound	CAS Number	LOR	Unit	EM0902848-084	EM0902848-086	EM0902848-088	EM0902848-088	
EA003 :pH (field/fox)								
pH (F)		0.1	pH Unit	7.5	7.5	7.5		
pH (Fox)		0.1	pH Unit	5.8	5.6	5.8		
Reaction Rate		1	Reaction Uni	2	1	1		

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EM0902848	Page	: 1 of 5
Client	: FULTON HOGAN	Laboratory	: Environmental Division Melbourne
Contact	: MR JUSTIN RHODES	Contact	: Steven McGrath
Address	: 10-30 DANA COURT	Address	: 4 Westall Rd Springvale VIC Australia 3171
	DANDENONG VIC 3175		
E-mail	: justin.rhodes@melbournewater.com.au	E-mail	: steven.mcgrath@alsenviro.com
Telephone	:	Telephone	: +61-3-8549 9600
Facsimile	:	Facsimile	: +61-3-8549 9601
Project	: PD4008 - Kelletts Road Drain Wetland	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 01-APR-2009
Sampler	: PR	Issue Date	: 10-APR-2009
Order number	:		
		No. of samples received	: 75
Quote number	: ME/363/08	No. of samples analysed	: 38

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

ΝΑΤΑ	NATA Accredited Laboratory 825 This document is issued in		electronically signed by the authorized signato procedures specified in 21 CFR Part 11.	ries indicated below. Electronic signing	g has been
NAIA	accordance with NATA	Signatories	Position	Accreditation Category	
	accreditation requirements.	Kim McCabe	Senior Inorganic Chemist	Inorganics	
WORLD RECOGNISED	Accredited for compliance with				
ACCREDITATION	ISO/IEC 17025.				
			mental Division Melbourne		
		Part of th	e ALS Laboratory Group		
			estall Rd Springvale VIC Australia 3171		

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL	atory sample ID Client sample ID Method: Compound 3 :pH (field/fox) (QC Lot: 943644) EA003: Reaction Rate 02848-002 TP01_0.1-0.2_PartB EA003: pH (F) EA003: pH (F) 02848-022 TP02_3.0-3.1_PartB EA003: Reaction Rate 02848-022 TP02_3.0-3.1_PartB EA003: Reaction Rate 02848-020 TP02_3.0-3.1_PartB EA003: Reaction Rate 02848-020 TP05_0.5-0.6_PartB EA003: Reaction Rate 02848-050 TP05_0.5-0.6_PartB EA003: Reaction Rate				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EA003 :pH (field/fox	x) (QC Lot: 943644)											
EM0902848-002	TP01_0.1-0.2_PartB	EA003: Reaction Rate		1		3	3	0.0	No Limit			
		EA003: pH (F)		0.1	pH Unit	5.8	5.7	1.7	0% - 20%			
		EA003: pH (Fox)		0.1	pH Unit	2.4	2.4	0.0	0% - 20%			
EM0902848-022	TP02_3.0-3.1_PartB	EA003: Reaction Rate		1		4	4	0.0	No Limit			
		EA003: pH (F)		0.1	pH Unit	6.6	6.6	0.0	0% - 20%			
		EA003: pH (Fox)		0.1	pH Unit	6.5	6.4	1.6	0% - 20%			
EA003 :pH (field/fox	(QC Lot: 943645)											
EM0902848-050	TP05_0.5-0.6_PartB	EA003: Reaction Rate		1		3	3	0.0	No Limit			
		EA003: pH (F)		0.1	pH Unit	6.2	6.2	0.0	0% - 20%			
		EA003: pH (Fox)		0.1	pH Unit	3.3	3.4	3.0	0% - 20%			
EM0902848-070	TP06_3.0-3.1_PartB	EA003: Reaction Rate		1		2	2	0.0	No Limit			
		EA003: pH (F)		0.1	pH Unit	7.0	7.0	0.0	0% - 20%			
		EA003: pH (Fox)		0.1	pH Unit	5.1	5.2	1.9	0% - 20%			

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

• No Method Blank (MB) or Laboratory Control Spike (SCS) Results are required to be reported.

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) Results are required to be reported.

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	: EM0902848	Page	: 1 of 5
Client	: FULTON HOGAN	Laboratory	: Environmental Division Melbourne
Contact	: MR JUSTIN RHODES	Contact	: Steven McGrath
Address	: 10-30 DANA COURT DANDENONG VIC 3175	Address	: 4 Westall Rd Springvale VIC Australia 3171
E-mail	: justin.rhodes@melbournewater.com.au	E-mail	: steven.mcgrath@alsenviro.com
Telephone	:	Telephone	: +61-3-8549 9600
Facsimile	:	Facsimile	: +61-3-8549 9601
Project	: PD4008 - Kelletts Road Drain Wetland	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 01-APR-2009
Sampler	: PR	Issue Date	: 10-APR-2009
Order number	:		
		No. of samples received	: 75
Quote number	: ME/363/08	No. of samples analysed	: 38

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Melbourne

Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA003 :pH (field/fox)								
Snap Lock Bag - frozen								
TP01_0.1-0.2_PartB,	TP01_0.5-0.6_PartB,	01-APR-2009				09-APR-2009	01-APR-2010	✓
TP01_1.0-1.1_PartB,	TP01_2.0-2.1_PartB,							
TP01_3.0-3.1_PartB,	TP01_4.0-4.1_PartB,							
TP02_0.5-0.6_PartB,	TP02_1.0-1.1_PartB,							
TP02_2.0-2.1_PartB,	TP02_3.0-3.1_PartB,							
TP03_0.5-0.6_PartB,	TP03_1.0-1.1_PartB,							
TP03_2.0-2.1_PartB,	TP03_3.0-3.1_PartB,							
TP03_4.0-4.1_PartB,	TP04_0.5-0.6_PartB,							
TP04_1.0-1.1_PartB,	TP04_2.0-2.1_PartB,							
TP04_3.0-3.1_PartB,	TP04_4.0-4.1_PartB,							
TP05_0.5-0.6_PartB,	TP05_1.0-1.1_PartB,							
TP05_2.0-2.1_PartB,	TP05_3.0-3.1_PartB,							
TP05_4.0-4.1_PartB,	TP05_5.0-5.1_PartB,							
TP06_0.5-0.6_PartB,	TP06_1.0-1.1_PartB,							
TP06_2.0-2.1_PartB,	TP06_3.0-3.1_PartB,							
TP06_4.0-4.1_PartB,	TP06_5.0-5.1_PartB,							
TP07_0.5-0.6_PartB,	TP07_1.0-1.1_PartB,							
TP07_2.0-2.1_PartB,	TP07_3.0-3.1_PartB,							
TP07_4.0-4.1_PartB,	TP07_5.0-5.1_PartB							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL Evaluation: * = Quality Control frequency not within specification ; 🗸 = Quality Control frequency within specification										
Quality Control Sample Type		C	ount	Rate (%)			Quality Control Specification			
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation				
Laboratory Duplicates (DUP)										
pH field/fox	EA003	4	38	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement			

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH field/fox	EA003	SOIL	Ahern et al 1998 - determined on a 1:5 soil/water extract designed to simulate field measured pH and pH after
			the extract has been oxidised with peroxide.
Preparation Methods	Method	Matrix	Method Descriptions
Drying only	EN020D	SOIL	In House

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

REBATCH OF EM0902848

MELBO	URNE WATER WA	TERWAYS A	LLIANCE	E (MWWA	A)	E	Environmen Melbo		1	CHAIN OF	CUSTO	DY	
10-30 D	C/O FULTON HOGAN Tel: 0418 572 137 10-30 DANA COURT DANE Fax: CONTACT PHIL RILEY E-mail: phil.riley@fultonhogan.com.au; justin.rhodes@melbournewater.com.au Sampled By: PHIL RILEY MWWA Project No: PD4008 Specifications:							- Me Work Order EM0903402 - Telephone : + 61-3-8549 9600			Laboratory Details Lab. Name: Lab. Address: Contact Name: Lab. Ref: Project Name: PD4008 Kel		
Specifi	cations:					· · · mass				Yes (tick)		1	
1 Urge	nt TAT required? (p	lease circle:	24hr	48hr	3days) UF	GENT 5			25APR09		SCREEN		
	TAT Guarantee Rec		£ 110	10111	<u>oudyo</u> , <u>or</u>					<u> </u>	L R		
	y sediment layer pre		s to be e	xcluded f	rom extrac	tions?: N	/A						
4. % ext	traneous material re	moved from	samples 1	to be repo	orted as pe	r NEPM	5.1.1?: N	o l			448.3		
5. Spec	ial storage requirem	nents: Please	provide	in esdat	format (G	HD)					44		
6. Repo	rt Format: Fax: NO	Hardcopy: Y	ES .CSV	/ Format:	YES Ema	il: YES				X	ETIN	Survey of the	
												الله الله الله الله الله الله الله الله	
Lab.		Sampling		Matrix			Prese	vation		Containe	ULL = 2)	SI	
ID	Sample ID	Date	soil	water	stream sedimen t	filt'ed	acid	ice	other	No. & type	EPA BU (TABLE	SPOCAS	
	P01_0.1_0.2_Part	1/04/2009	Х					X	(GLASS JA	R		
	P01_0.1_0.2_Part	1/04/2009	X					X		PLOCK B/			
		1/04/2009	X					<u>X</u>		GLASS JA			
1		1/04/2009	<u> </u>					X	L	PLOCK B/		X	
	P01_1.0-1.1_Part		Х	L				X		GLASS JA			
	P01_1.0-1.1_Part		X					X		PLOCK B/			
	P01_2.0-2.1_Part		X	L				X		GLASS JA			
	P01_2.0-2.1_Part	1/04/2009	X	[1		<u> </u>	X	I ZI	PLOCK B/	٩G		

Analysis ree'd 20/4/9 3:40 Peter
	P01_3.0-3.1_Part	1/04/2009	X		X	GLASS JAR	
2	P01_3.0-3.1_Part	1/04/2009	Х		X	ZIPLOCK BAG	X
	P01_4.0-4.1_Part	1/04/2009	X		Х	GLASS JAR	
	P01_4.0-4.1_Partl	1/04/2009	X		X	ZIPLOCK BAG	
	TP02_0.1-	1/04/2009	Х		X	GLASS JAR	
	TP02_0.1-	1/04/2009	X		X	ZIPLOCK BAG	·
	TP02_0.5-	1/04/2009	Х		Х	GLASS JAR	
3	TP02_0.5-	1/04/2009	X		X	ZIPLOCK BAG	X
	P02_1.0-1.1_Part/	1/04/2009	Х		X	GLASS JAR	
	P02_1.0-1.1_Partl	1/04/2009	X		Х	ZIPLOCK BAG	
	P02_2.0-2.1_Part/	1/04/2009	X		X	GLASS JAR	
4	P02_2.0-2.1_Partl	1/04/2009	Х		Х	ZIPLOCK BAG	X
	P02_3.0-3.1_Part/	1/04/2009	Х		Х	GLASS JAR	
	P02_3.0-3.1_Partl	1/04/2009	Х		Х	ZIPLOCK BAG	
	TP03_0.1-	1/04/2009	Х		Х	GLASS JAR	
	TP03_0.1-	1/04/2009	Х		X	ZIPLOCK BAG	
	TP03_0.5-	1/04/2009	Х		Х	GLASS JAR	
5	******	1/04/2009	X		Х	ZIPLOCK BAG	X
	P03_1.0-1.1_Part/	1/04/2009	Х		Х	GLASS JAR	
	[•] P03_1.0-1.1_Partl	1/04/2009	X		Х	ZIPLOCK BAG	
	P03_2.0-2.1_Part/	1/04/2009	Х		Х	GLASS JAR	
6	P03_2.0-2.1_Partl	1/04/2009	X		Х	ZIPLOCK BAG	X
	P03_3.0-3.1_Part/	1/04/2009	X		Х	GLASS JAR	
	P03_3.0-3.1_Part	1/04/2009	Х		Х	ZIPLOCK BAG	2.78 1
	P03_4.0_4.1_Part	1/04/2009	Х		X	GLASS JAR	- **
	P03_4.0_4.1_Part	1/04/2009	X		Х	ZIPLOCK BAG	
	TP04_0.1-	1/04/2009	Х		Х	GLASS JAR	
	TP04_0.1-	1/04/2009	Х		Х	ZIPLOCK BAG	
	TP04_0.5-	1/04/2009	Х		Х	GLASS JAR	

т. Тал., т

7	TP04_0.5-	1/04/2009	X		4	X	ZIPLOCK BAG	X
	P04_1.0-1.1_Part/	1/04/2009	X			X	GLASS JAR	
	P04_1.0-1.1_Partl	1/04/2009	X			X	ZIPLOCK BAG	
	P04_2.0-2.1_Part/	1/04/2009	X			X	GLASS JAR	
8	P04_2.0-2.1_Partl	1/04/2009	X			X	ZIPLOCK BAG	X
	P04_3.0-3.1_Part/	1/04/2009	X			X	GLASS JAR	
	P04_3.0-3.1_Partl		X			X	ZIPLOCK BAG	
	P04_4.0-4.1_Part/	1/04/2009	Х			X	GLASS JAR	
	P04_4.0-4.1_Partl	1/04/2009	X			X	ZIPLOCK BAG	
	TP05_0.1-	1/04/2009	Х			X	GLASS JAR	
	TP05_0.1-	1/04/2009	X			X	ZIPLOCK BAG	
	TP05_0.5-	1/04/2009	Х			Х	GLASS JAR	
9	TP05_0.5-	1/04/2009	X			Х	ZIPLOCK BAG	X
	P05_1.0-1.1_Part/	1/04/2009	Х			X	GLASS JAR	
	[P05_1.0-1.1_Part]	1/04/2009	X			X	ZIPLOCK BAG	
	P05_2.0-2.1_Part/	1/04/2009	X			X	GLASS JAR	
	P05_2.0-2.1_Part	1/04/2009	Х			Х	ZIPLOCK BAG	
	P05_3.0-3.1_Part/	1/04/2009	Х			Х	GLASS JAR	
	P05_3.0-3.1_Part	1/04/2009	X			X	ZIPLOCK BAG	
	P05_4.0-4.1_Part/	1/04/2009	Х	·		Х	GLASS JAR	
10	P05_4.0-4.1_Part	1/04/2009	X			Х	ZIPLOCK BAG	X
	P05_5.0-5.1_Part/	1/04/2009	Х			Х	GLASS JAR	·
	P05_5.0-5.1_Partl	1/04/2009	Х			Х	ZIPLOCK BAG	
	TP06_0.1_0.2_Pa	1/04/2009	X			Х	GLASS JAR	··,…
	TP06_0.1-	1/04/2009	Х			Х	ZIPLOCK BAG	=
	TP06_0.5-	1/04/2009	Х			Х	GLASS JAR	الم مع الم
11	TP06_0.5-	1/04/2009	Х			Х	ZIPLOCK BAG	X
	P06_1.0-1.1_Part/	1/04/2009	Х			Х	GLASS JAR	
	P06_1.0-1.1_Part	1/04/2009	Х			Х	ZIPLOCK BAG	

۲.,

	P06_2.0-2.1_Part/	1/04/2000	X		X	GLASS JAR	
	P06_2.0-2.1_Part		X		- <u>x</u>	ZIPLOCK BAG	
	P06_3.0-3.1_Part		×		× ×	GLASS JAR	
12	P06_3.0-3.1_Partl		X			ZIPLOCK BAG	x
	P06_4.0-4.1_Part		X			GLASS JAR	
13	P06_4.0-4.1_Part		X		X	ZIPLOCK BAG	X
· 🥪	P06_5.0-5.1_Part		x		X	GLASS JAR	
	P06 5.0-5.1 Part		X		X	ZIPLOCK BAG	
		1/04/2009	X		X	GLASS JAR	
		1/04/2009	X		X	ZIPLOCK BAG	
		1/04/2009	X		X	GLASS JAR	
14		1/04/2009	X		x	ZIPLOCK BAG	X
	P07_1.0-1.1_Part/1		X		X	GLASS JAR	
	P07_1.0-1.1_Parti 1		Х		X	ZIPLOCK BAG	
	P07_2.0-2.1_Part/1		Х		X	GLASS JAR	
15	P07_2.0-2.1_Partl 1	1/04/2009	Х		X	ZIPLOCK BAG	X
	P07_3.0-3.1_Part/1	1/04/2009	X		X	GLASS JAR	
	P07_3.0-3.1_Partl 1	1/04/2009	Х		X	ZIPLOCK BAG	
	P07_4.0-4.1_Part/1	1/04/2009	Х		X	GLASS JAR	
	P07_4.0-4.1_Partl1		Х		X	ZIPLOCK BAG	
	_ P07_5.0-5.1_Part/1		Х		X	GLASS JAR	
<u>16</u>	P07_5.0-5.1_Partl1		X		X	ZIPLOCK BAG	X
	DUP01_PartA 1		Х		X	GLASS JAR	
	DUP01_PartB 1	/04/2009	X		X	ZIPLOCK BAG	
1:		N:		 n	00/04/0000	Dolinessiahod by	
		Signed:		 Date		Relinquished by:	
ceive	ed by: S	Signed:		 Dates		Received by:	

FULTON HOO SE DANA COU	RT DANDENONG	Ter, 0416 57 Fax CONTAC B-mail: philo Suntin-reader	T PHE PIL Heydfulton Genelaces	ihogan.o Herester:	oesusu Consta				Laboratory Lab. Nama Sab. Addie Contasi Ha Lab. Rof: Preject Nar	c 9.5: 975-01			Gras	ins Ja	i R.đ., Sg blonske	onng va Is	ie VX	3 917	,	- Pix	siirenne Ros		25 Ap	2951 29 Ap	r 92
ochicolions;		NWW A Prop				••••			Yee (lick)	nex PD4	1908 A.S.	afta Ara		is Wa	tland	Anei	yser #	iosue	8)						
n ITAT Guerr	tuired? (plaasa circla: anlas Required? NO					LIM BY	75APR	89 PLEAS	ε				Cu Ph			ł						R FOR &	205.41	0	har
s any sediment	t fayor present in wajers nafalsef removed som so	arapias la ba a	sponine as p	or NEPW	N(A 15,1,17; N	a				6873 (%)		×	Copyll, 1									BHUN HA	80		
Seport Format	Fact NO Hardcoor, YE	s cavide in each S .CSV Forma	at format (C 4: Y2:\$ Em	HD] al: YES					×	LETRIA		xafifa bas	÷.								N	CTIONS C	10%		
tab.	Lapodes@naipevramo	i Saropling	an paarany	Matrix	nogan noi	n.u.u	Preserv		Container	BULLE	÷.	an an	100								FROZEN	R UNI	SPR		
10 10	Sample ID	Date	sal	wetar	stream Sectors	Billed			No. 4 type	EPA BUL	SPOCAS	PH*L4H4	Metalo (2 Mai Moul							Ł	KEEP	ATORE L	NHER.		
	TP91_9.1_0.2_Pa4A	104/2009	x	1	- ANHING			x	OLASS JAS	1		1			+	Ť	+	1	+		Ť	×			Ť
	7/P01_0.1_0.2_PartB	1/04/2009	×						DPLOCK BA			L									X				
	TP01_0.5-0.6_Parts TP01_0.5-0.6_Pert8	1/04/2009	x			+		x	GLASS JAR ZIPLDOK BA		x	-	<u> </u>					-		+	×	×			-
	TP01_1.0-1.1_PasiA	1/94/2009	×			ļ		x	GLASS JAR											1		×			
	3901_1.0-1.1_PadB 3901_20-2.1_PadA	1874/2009	×	+	+			x	GLASS MA									-	+	+	×	×		-	+
	1901_20-2.1_PadB	1/04/2009	×	1	1	1	1		2PLDCK BA									_	1	1	×				
	1961_30-3.1_PartA 1961_30-3.1_PartB		x	-	-	-	 	X	GLASS JAR DPUTCK BR		x				+	+	+	+	+-	-	x	⊢ K X	+		
	1P01_4.0-4.1_Parts 1P01_4.0-4.1_Parts	1/04/2009	X X					X	GLASS JAR								1	1		1	Ì.	X	1		_
	TP02_0.1-0.2_Partit	104/2009	x		<u> </u>			X X	OPLOCK BA									-+	+		*	X			~~
	TP02_0.1-0.2_Patt8 TP02_0.5-0.6_PattA	994/2099 Va4/2099	x				ļ	X	SPLICER BAI		~					_	1		-		*	*	-	1	
	TP02_0.5-0.6_PanB		x		<u> </u>	<u> </u>	<u> </u>		UPUDCK BA		×					+			-	+	×	X	-	-	
	TP02_1.0-1.1_Pants TP02_1.0-1.1_Pant8	1/04/2009 1/04/2009	- <u>×</u>	-			[x x	GLASS JAR OPLICEN BA				F				-	1	T	T	1	X	1		_
	TP07_28-2.1_Pane	1404/2009	x				Ŀ	X	GLASS JAR				Ŀł		_			+			X	X	-	\neg	+
		1/04/2009	×						BPLOCK BAG		X						1			-	x	X	Ţ		Ļ
	TP02_3.0-3.1_Pate	1494/2009	x	1	1				GLASS JAR DPLOCK BA	3					-+	+	-	╉	-+	-	×	k x	+	+	-
	TP03_0.1-0.2_Parts	1/04/2009	×	1				x	GLASS JAR	1					1	1	1	1		ļ.,,		x	-		1
	TP03_0.6-0.6_Parte	1/04/2006 1/04/2008	×	h	1	-		x	GLASS JAR				\vdash	-			+	+-	+	1	*	×	+	+	-
	TP03_0.541.6_PartB	1/24/2009	×		İ	İ		x	OPLOCK BAC	3	×					-			1	1	x	X	-		
	TP03_1.0-1.1_Patts TP03_1.0-1.1_Patts		×			<u> </u>			GLASS JAR OPLOCK SAU					+					-		×	×		-	+
		1/04/2009	×	1	ļ	ļ		x	GLASS JAR SPLOCK BAC					_			_		1	1	1	ĸ	1		
		10/02009 1/04/2009	x	-					GLASS JAR	3	<u>×</u>				+	+	+	+	+	+	ĸ	X	-	-+	
[TP60_0.0-0.1_PadB	1/04/2009 1/04/2009	X X	ļ				×	OPLOCK BAL					_	_	_	-	_	-	-	x	X	Ť		1
		1/04/2009	x	1				× .	OPLCICK BAD									- -	+	+	x	X	+	+	+
	TP04_0.1-8.2_Parts	1/24/2008	×	I					151,455 JAR								-	-				X			
	TP04_0.5-5.5_Parts		×						RLASS JAR	-		-			-		+	+	+	+	X	X	-	\rightarrow	
	TP04_8-5-8-6_Parts 7P04_10-11_Parts		x	~~~~~				¥ .	IPLOCK BAG	2	x		_	-			1	1	1	1	x	×	-	1	
	7P04_10-1.1 Perm		x			-			SLADS JAN IPLOCK BAS						-	-	+	+	+	+	x	X	+-		
	TP04_20-2.1_PanA TP04_20-2.1_PanB	1/04/2009	x		L				GLASS JAR		x			_				_	1	1		х		1	
	TP04_3.0-3.1_PUIA		x						GLASS JAR	5	×			+	+	+	+	+		+	×	X	+	-	
		1/04/2009	X X						SHOCK BAD	è						_		_	-	1	X	X	ļ		
	TP04_40-41_Pana TP01_40-41_Pana		× ×						GLASS JAR IPLODE BAC	;					_		+	+	~ { -	╞	×	x x	-	+	-
	1905 D.1432 924A	1/84/2809	X			_			GLASE JAR								1		-	-	1	X	1	-	1
	1205_0.1-0.2_Pwite 1205_0.5-0.6_Paits		X X						IPLOCH BAG GEASS JAR							+-	╈	+	-	+	<u> *</u>	x x	+		
	1995_8.5-0.8_PedB	1/04/2009	×	1	******			X	PLOCK BAC	,	x						1	1			x	x			t
	TP05_1.0-1.1_PattA	1/04/2009	x x	ļ					GLASS JAR IPLOOK BAG	-							+	+	+	+	×	×	+	+	+
	105_20-2.1_PanA		×						GLASS INR								1	1		t		×			t.
	TP05_20-2 (_PodB TP05_80-3.1_PadA	1/04/2009	×						PLOCK BAG				-	+	_	+	+	+	+	+	×	×	+	+	+
	TP05_30-3.1_Pans	1/84/2009	×						IPLOCK BAG	•							1	1	1	t	x	x			
	TP05_40-4.1_Pank TP05_40-4.1_PanB		×						GLASS JAR IPLOCK BAG	; F	x				_	+	+	+	+	+	x	X	+	-	+
	7905_58-5.1_PostA	1042999	×					x	GLASS JAR					_		1	1	-	1	F		×	t	+	1
	TP05_5.0-5.1_Pa4B TP05_6.1_0-2_Pa4A		x	\vdash	\vdash				IPLOICK BAG GLASS JAR	-			-+-			-		+	+	+	ĸ	x	+		-
	TPOB_0.1-0.2_PANB	6049200B	x					X i	PUCK BAG	-						1		1		L	x	ĸ	1	1	1
	TP08_0.5-0.5_PartA TP08_0.5-0.5_PartB	004/2009 1/04/2009	x x						GLA:BS JAR IPLCICK BAB	-	x		+	+	+	+	+	+	+	+	x	X	+	+	- -
	TP06_1-9-5.1_Pan4	1/04/2009	x					x	GLASS JAR								1	1				x	1		
	IP05_20-2.1_PertA		x						IPLOCK BAG OLASS JAR	-			+	-+	-+-			-	-	-	×	×	+		
	Bie91.2.02 309T	1/84/2909	x					X i	IPLOCK 845	i ļ			_	1	_	-	1	1	1	Ļ	×	х	1	ļ	-
	TP08_3.0-3.1_PartA TP06_3.0-3.1_PartB	1/04/2049 1/04/2049	*						BLASS JAR IPLOCK BAS		x	_	+	+		-	-	+	-	-	x	×	+	+	+
	TP06_0.0-0.1_Part4		X				ļ		GLADE JAR				_	_		_	ļ	1	1	Ĺ		X		.1	
	TP06_4.0-4.1_Part# TP06_5.0-5.1_P6/A		<u>x</u>						IPLOOK BAG GLASS JAR		x	-	-+-			·	-	+-			*	X	+	-	+
	TP06_5.0-6.1_P8/08	1/04/2009	х					XZ	IPLOCK BAG									1.	1		x	X		1	
	TP67_8.1-0.2_PMA TP67_8.1-0.2_PM8		<u>x</u>						GLASS JAR PLOCK BAG	-				-+				+	+	+	x	X X	+		+
	TP67_6.5-0.6_PentA	104/2049	x					X	GLASS JAR							1	1	-	1	t	1	X	Ţ.	1	1
	TP07_0.5-0.6_PetB 7P07_1.0-1.1_Pats		×				-+	X J	IPLOICK BAG GLASS JAR		×			_			+	+	+	-	×	X X	-	-	-
	TP07_1.0-1.1_P6/18	1/04/20/09	X					XZ	PLOCK SAG	-					_	1-	1	+	1-	1	x	x	Ļ	+	1
	TP07_2.0-2.1_PanA TP07_2.0-2.1_PanB		×	······					GLASS JAR PLOCE BEG	-	x		+	+	+		+	+	+	-	x	× ×	+		-
	TP07_3.D-3.1_Parta	1/04/70/99	x					X	RALESS JAR							1	1	1		ļ		X	1		_
	7P07_30-3 1 Pans TP07_4.0-4.1 Pans		X						PLOCK BAG BLASS JAR				-	1	_	-	1	1	-	-	X	×	-	Ţ	-
	TP07_4.0-4.1_P0%8	1/04/2009	×					XI	PLOCK BAG										1.		×	×	t		
	TP07_5.0-5.1_P8/4	004/2009	x						GLAES JAR PLOCK BAG		8			Ŧ		+	+	┦	+	+	×	××	-	Ŧ	+
	DUP01_Parts	9005/94/2008	x					X	RASS JAR		-					1	t	1	1	t		×	1		1
	OVIDA (David	1/04/2008	x					X 7	PLOCE BAG				+	-	+	+	+	+	1	-	×	×		-	1
	DUP01, PartB																								

F%a

(ALS)

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order	: EM0903402	Page	: 1 of 9
Client	: FULTON HOGAN	Laboratory	: Environmental Division Melbourne
Contact	: MR JUSTIN RHODES	Contact	: Steven McGrath
Address	: 10-30 DANA COURT DANDENONG VIC 3175	Address	: 4 Westall Rd Springvale VIC Australia 3171
E-mail	: justin.rhodes@melbournewater.com.au	E-mail	: steven.mcgrath@alsenviro.com
Telephone	:	Telephone	: +61-3-8549 9600
Facsimile	:	Facsimile	: +61-3-8549 9601
Project	PD4008 - Kelletts Road Drain Wetland - Melbourne Water Waterways Alliance Project REBATCH EM0902848	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 21-APR-2009
Sampler	: PR	Issue Date	: 23-APR-2009
Site	:		
		No. of samples received	: 16
Quote number	: ME/363/08	No. of samples analysed	: 16

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

ΝΑΤΑ	NATA Accredited Laboratory 825 This document is issued in	<i>Signatories</i> This document has been electronically carried out in compliance with procedures s		indicated below. Electronic signing has been
NAIA	accordance with NATA	Signatories	Position	Accreditation Category
	accreditation requirements.	Kim McCabe	Senior Inorganic Chemist	Inorganics
WORLD RECOGNISED	Accredited for compliance with ISO/IEC 17025.			
		Environmental Divi Part of the ALS Labo		
		4 Westall Rd Springvale		

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

• Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.

• Retained Acidity not required because pH KCI greater than or equal to 4.5

• SPOCAS analysis conducted by ALS Brisbane, NATA Site No. 818.

Sub-Matrix: SOIL		Cli	ent sample ID	TP01_0.5-0.6_PartB	TP01_3.0-3.1_PartB	TP02_0.5-0.6_PartB	TP02_2.0-2.1_PartB	TP03_0.5-0.6_PartB
	C	lient sampli	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0903402-001	EM0903402-002	EM0903402-003	EM0903402-004	EM0903402-005
EA029-A: pH Measurements								
pH KCI (23A)		0.1	pH Unit	5.9	5.8	5.7	5.0	5.9
pH OX (23B)		0.1	pH Unit	5.0	6.9	4.6	5.8	4.6
EA029-B: Acidity Trail								
Titratable Actual Acidity (23F)		2	mole H+ / t	18	11	42	24	24
Titratable Peroxide Acidity (23G)		2	mole H+ / t	9	<2	19	23	10
Titratable Sulfidic Acidity (23H)		2	mole H+ / t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.03	<0.02	0.07	0.04	0.04
sulfidic - Titratable Peroxide Acidity		0.02	% pyrite S	<0.02	<0.02	0.03	0.04	<0.02
(s-23G)								
sulfidic - Titratable Sulfidic Acidity (s-23H)		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA029-C: Sulfur Trail								
KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Sulfur (23De)		0.02	% S	<0.02	<0.02	<0.02	<0.02	0.02
Peroxide Oxidisable Sulfur (23E)		0.02	% S	<0.02	<0.02	<0.02	<0.02	0.02
acidity - Peroxide Oxidisable Sulfur		10	mole H+ / t	<10	<10	<10	<10	14
(a-23E)								
EA029-D: Calcium Values								
KCI Extractable Calcium (23Vh)		0.02	% Ca	0.05	0.06	0.07	0.07	0.05
Peroxide Calcium (23Wh)		0.02	% Ca	0.07	0.07	0.10	0.10	0.07
Acid Reacted Calcium (23X)		0.02	% Ca	<0.02	<0.02	0.03	0.02	<0.02
acidity - Acid Reacted Calcium (a-23X)		10	mole H+ / t	<10	<10	14	12	<10
sulfidic - Acid Reacted Calcium (s-23X)		0.02	% S	<0.02	<0.02	0.02	<0.02	<0.02
EA029-E: Magnesium Values								
KCI Extractable Magnesium (23Sm)		0.02	% Mg	0.08	0.12	0.07	0.11	0.08
Peroxide Magnesium (23Tm)		0.02	% Mg	0.10	0.14	0.10	0.14	0.10
Acid Reacted Magnesium (23U)		0.02	% Mg	<0.02	<0.02	0.03	0.03	0.02
Acidity - Acid Reacted Magnesium (a-23U)		10	mole H+ / t	16	16	24	26	18
sulfidic - Acid Reacted Magnesium		0.02	% S	0.02	0.02	0.04	0.04	0.03
(s-23U)								
EA029-F: Excess Acid Neutralising Capa	city							
Excess Acid Neutralising Capacity (23Q)		0.02	% CaCO3		0.05			
acidity - Excess Acid Neutralising		10	mole H+ / t		<10			
Capacity (a-23Q)			0 / -		• • •			
sulfidic - Excess Acid Neutralising		0.02	% S		<0.02			
Capacity (s-23Q)								
EA029-H: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5

Sub-Matrix: SOIL	Client sample ID			TP01_0.5-0.6_PartB	TP01_3.0-3.1_PartB	TP02_0.5-0.6_PartB	TP02_2.0-2.1_PartB	TP03_0.5-0.6_PartB					
	C	ient sampli	ng date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00					
Compound	CAS Number	LOR	Unit	EM0903402-001	EM0903402-002	EM0903402-003	EM0903402-004	EM0903402-005					
EA029-H: Acid Base Accounting - Continued													
Net Acidity (sulfur units)		0.02	% S	0.03	<0.02	0.07	0.04	0.06					
Net Acidity (acidity units)		10	mole H+ / t	18	11	42	24	38					
Liming Rate		1	kg CaCO3/t	1	<1	3	2	3					

Sub-Matrix: SOIL		Cli	ent sample ID	TP03_2.0-2.1_PartB	TP04_0.5-0.6_PartB	TP04_2.0-2.1_PartB	TP05_0.5-0.6_PartB	TP05_4.0-4.1_PartB
	Cl	ient sampli	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0903402-006	EM0903402-007	EM0903402-008	EM0903402-009	EM0903402-010
EA029-A: pH Measurements								
pH KCI (23A)		0.1	pH Unit	5.6	6.0	5.8	5.9	5.6
pH OX (23B)		0.1	pH Unit	6.8	4.9	6.9	4.9	6.3
EA029-B: Acidity Trail								
Titratable Actual Acidity (23F)		2	mole H+ / t	13	26	10	29	13
Titratable Peroxide Acidity (23G)		2	mole H+ / t	<2	11	<2	11	10
Titratable Sulfidic Acidity (23H)		2	mole H+ / t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.02	0.04	<0.02	0.05	0.02
sulfidic - Titratable Peroxide Acidity		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
(s-23G)		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
sulfidic - Titratable Sulfidic Acidity (s-23H)		0.02	70 pyrile O	-v.UZ	-0.0Z	-0.02	-0.02	-0.02
EA029-C: Sulfur Trail		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Sulfur (23De)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Oxidisable Sulfur (23E)		10	mole H+ / t	<10	<10	<10	<10	<10
acidity - Peroxide Oxidisable Sulfur (a-23E)		10	mole III / t	10	10	10	10	
EA029-D: Calcium Values								
		0.02	% Ca	0.05	0.05	0.06	0.05	0.05
KCI Extractable Calcium (23Vh) Peroxide Calcium (23Wh)		0.02	% Ca	0.03	0.06	0.07	0.03	0.05
Acid Reacted Calcium (23X)		0.02	% Ca	0.02	<0.02	<0.02	0.02	<0.02
acidity - Acid Reacted Calcium (a-23X)		10	mole H+ / t	10	<10	<10	10	<10
sulfidic - Acid Reacted Calcium (s-23X)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
EA029-E: Magnesium Values			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
KCI Extractable Magnesium (23Sm)		0.02	% Mg	0.11	0.07	0.14	0.05	0.09
Peroxide Magnesium (23Tm)		0.02	% Mg	0.14	0.08	0.16	0.08	0.10
Acid Reacted Magnesium (23U)		0.02	% Mg	0.03	<0.02	0.03	0.02	<0.02
Acidity - Acid Reacted Magnesium (a-23U)		10	mole H+ / t	27	10	23	18	14
sulfidic - Acid Reacted Magnesium (a-250)		0.02	% S	0.04	<0.02	0.04	0.03	0.02
(s-23U)								
EA029-F: Excess Acid Neutralising Capac	;ity							
Excess Acid Neutralising Capacity (23Q)		0.02	% CaCO3	<0.02		0.12		
acidity - Excess Acid Neutralising		10	mole H+ / t	<10		25		
Capacity (a-23Q)								
sulfidic - Excess Acid Neutralising		0.02	% S	<0.02		0.04		
Capacity (s-23Q)								
EA029-H: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5

Sub-Matrix: SOIL		Clie	ent sample ID	TP03_2.0-2.1_PartB	TP04_0.5-0.6_PartB	TP04_2.0-2.1_PartB	TP05_0.5-0.6_PartB	TP05_4.0-4.1_PartB					
	C	lient sampli	ng date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00					
Compound	CAS Number	LOR	Unit	EM0903402-006	EM0903402-007	EM0903402-008	EM0903402-009	EM0903402-010					
EA029-H: Acid Base Accounting - Continued													
Net Acidity (sulfur units)		0.02	% S	0.02	0.04	<0.02	0.05	0.02					
Net Acidity (acidity units)		10	mole H+ / t	13	26	10	29	13					
Liming Rate		1	kg CaCO3/t	<1	2	<1	2	<1					

Sub-Matrix: SOIL		Cli	ent sample ID	TP06_0.5-0.6_PartB	TP06_3.0-3.1_PartB	TP06_4.0-4.1_PartB	TP07_0.5-0.6_PartB	TP07_2.0-2.1_PartB
	Cl	lient sampli	ing date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00
Compound	CAS Number	LOR	Unit	EM0903402-011	EM0903402-012	EM0903402-013	EM0903402-014	EM0903402-015
EA029-A: pH Measurements								
pH KCI (23A)		0.1	pH Unit	5.8	5.6	6.3	5.3	5.9
pH OX (23B)		0.1	pH Unit	4.8	6.6	6.4	4.0	6.7
EA029-B: Acidity Trail								
Titratable Actual Acidity (23F)		2	mole H+ / t	30	13	6	20	20
Titratable Peroxide Acidity (23G)		2	mole H+ / t	9	<2	5	9	<2
Titratable Sulfidic Acidity (23H)		2	mole H+ / t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.05	0.02	<0.02	0.03	0.03
sulfidic - Titratable Peroxide Acidity (s-23G)		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
sulfidic - Titratable Sulfidic Acidity (s-23H)		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA029-C: Sulfur Trail								
KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Sulfur (23De)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Oxidisable Sulfur (23E)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Peroxide Oxidisable Sulfur		10	mole H+ / t	<10	<10	<10	<10	<10
(a-23E)								
EA029-D: Calcium Values								
KCI Extractable Calcium (23Vh)		0.02	% Ca	0.07	0.05	0.03	0.06	0.04
Peroxide Calcium (23Wh)		0.02	% Ca	0.09	0.06	0.04	0.07	0.05
Acid Reacted Calcium (23X)		0.02	% Ca	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Acid Reacted Calcium (a-23X)		10	mole H+ / t	<10	<10	<10	<10	<10
sulfidic - Acid Reacted Calcium (s-23X)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
EA029-E: Magnesium Values								
KCI Extractable Magnesium (23Sm)		0.02	% Mg	0.06	0.09	0.05	0.06	0.09
Peroxide Magnesium (23Tm)		0.02	% Mg	0.08	0.11	0.06	0.07	0.11
Acid Reacted Magnesium (23U)		0.02	% Mg	<0.02	<0.02	<0.02	<0.02	<0.02
Acidity - Acid Reacted Magnesium (a-23U)		10	mole H+ / t	16	15	<10	<10	15
sulfidic - Acid Reacted Magnesium		0.02	% S	0.02	0.02	<0.02	<0.02	0.02
(s-23U)								
EA029-F: Excess Acid Neutralising Capac	city							
Excess Acid Neutralising Capacity (23Q)		0.02	% CaCO3		<0.02			<0.02
acidity - Excess Acid Neutralising		10	mole H+ / t		<10			<10
Capacity (a-23Q)								
sulfidic - Excess Acid Neutralising		0.02	% S		<0.02			<0.02
Capacity (s-23Q)								
EA029-H: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5

Sub-Matrix: SOIL		Clie	ent sample ID	TP06_0.5-0.6_PartB	TP06_3.0-3.1_PartB	TP06_4.0-4.1_PartB	TP07_0.5-0.6_PartB	TP07_2.0-2.1_PartB						
	C	lient sampli	ng date / time	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00	01-APR-2009 15:00						
Compound	CAS Number	LOR	Unit	EM0903402-011	EM0903402-012	EM0903402-013	EM0903402-014	EM0903402-015						
EA029-H: Acid Base Accounting - Continu	EA029-H: Acid Base Accounting - Continued													
Net Acidity (sulfur units)		0.02	% S	0.05	0.02	<0.02	0.03	0.03						
Net Acidity (acidity units)		10	mole H+ / t	30	13	<10	20	20						
Liming Rate		1	kg CaCO3/t	2	<1	<1	2	2						

Sub-Matrix: SOIL		Cli	ent sample ID	TP07_5.0-5.1_PartB	 	
	CI	ient sampli	ing date / time	01-APR-2009 15:00	 	
Querra a serie d		LOR	Unit	EM0903402-016	 	
Compound	CAS Number	LUR	Unit			
EA029-A: pH Measurements						
pH KCI (23A)		0.1	pH Unit	5.8	 	
рН ОХ (23В)		0.1	pH Unit	6.5	 	
EA029-B: Acidity Trail						
Titratable Actual Acidity (23F)		2	mole H+ / t	8	 	
Titratable Peroxide Acidity (23G)		2	mole H+ / t	4	 	
Titratable Sulfidic Acidity (23H)		2	mole H+ / t	<2	 	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	 	
sulfidic - Titratable Peroxide Acidity		0.02	% pyrite S	<0.02	 	
(s-23G)						
sulfidic - Titratable Sulfidic Acidity (s-23H)		0.02	% pyrite S	<0.02	 	
EA029-C: Sulfur Trail						
KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02	 	
Peroxide Sulfur (23De)		0.02	% S	<0.02	 	
Peroxide Oxidisable Sulfur (23E)		0.02	% S	<0.02	 	
acidity - Peroxide Oxidisable Sulfur		10	mole H+ / t	<10	 	
(a-23E)						
EA029-D: Calcium Values						
KCI Extractable Calcium (23Vh)		0.02	% Ca	0.03	 	
Peroxide Calcium (23Wh)		0.02	% Ca	0.04	 	
Acid Reacted Calcium (23X)		0.02	% Ca	<0.02	 	
acidity - Acid Reacted Calcium (a-23X)		10	mole H+ / t	<10	 	
sulfidic - Acid Reacted Calcium (s-23X)		0.02	% S	<0.02	 	
EA029-E: Magnesium Values						
KCI Extractable Magnesium (23Sm)		0.02	% Mg	0.06	 	
Peroxide Magnesium (23Tm)		0.02	% Mg	0.06	 	
Acid Reacted Magnesium (23U)		0.02	% Mg	<0.02	 	
Acidity - Acid Reacted Magnesium (a-23U)		10	mole H+ / t	<10	 	
sulfidic - Acid Reacted Magnesium		0.02	% S	<0.02	 	
(s-23U)						
EA029-H: Acid Base Accounting						
ANC Fineness Factor		0.5	-	1.5	 	
Net Acidity (sulfur units)		0.02	% S	<0.02	 	
Net Acidity (acidity units)		10	mole H+ / t	<10	 	
Liming Rate		1	kg CaCO3/t	<1	 	

Environmental Division

QUALITY CONTROL REPORT

Work Order	: EM0903402	Page	: 1 of 6
Client	: FULTON HOGAN	Laboratory	: Environmental Division Melbourne
Contact	: MR JUSTIN RHODES	Contact	: Steven McGrath
Address	: 10-30 DANA COURT DANDENONG VIC 3175	Address	: 4 Westall Rd Springvale VIC Australia 3171
E-mail	: justin.rhodes@melbournewater.com.au	E-mail	: steven.mcgrath@alsenviro.com
Telephone	:	Telephone	: +61-3-8549 9600
Facsimile	:	Facsimile	: +61-3-8549 9601
Project	PD4008 - Kelletts Road Drain Wetland - Melbourne Water Waterways Alliance Project REBATCH EM0902848	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 21-APR-2009
Sampler	: PR	Issue Date	: 23-APR-2009
Order number	:		
		No. of samples received	: 16
Quote number	: ME/363/08	No. of samples analysed	: 16

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EA029-A: pH Measu	rements (QC Lot: 957197)										
EM0903402-001	TP01_0.5-0.6_PartB	EA029: pH KCI (23A)		0.1	pH Unit	5.9	6.0	1.7	0% - 20%		
		EA029: pH OX (23B)		0.1	pH Unit	5.0	5.0	0.0	0% - 20%		
EM0903402-011	TP06_0.5-0.6_PartB	EA029: pH KCI (23A)		0.1	pH Unit	5.8	5.9	1.7	0% - 20%		
			0.1	pH Unit	4.8	4.9	2.1	0% - 20%			
EA029-B: Acidity Tr	ail (QC Lot: 957197)										
EM0903402-001	TP01_0.5-0.6_PartB	EA029: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.03	0.03	0.0	No Limit		
		EA029: sulfidic - Titratable Peroxide Acidity		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit		
		(s-23G)									
		EA029: sulfidic - Titratable Sulfidic Acidity		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit		
		(s-23H)									
		EA029: Titratable Actual Acidity (23F)		2	mole H+ / t	18	20	7.5	0% - 50%		
		EA029: Titratable Peroxide Acidity (23G)		2	mole H+ / t	9	10	13.3	No Limit		
		EA029: Titratable Sulfidic Acidity (23H)		2	mole H+ / t	<2	<2	0.0	No Limit		
EM0903402-011	TP06_0.5-0.6_PartB	EA029: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.05	0.05	0.0	No Limit		
	EA029: sulfidic - Titratable Peroxide Acidity		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit			
		(s-23G)									
		EA029: sulfidic - Titratable Sulfidic Acidity		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit		
		(s-23H)									
		EA029: Titratable Actual Acidity (23F)		2	mole H+ / t	30	30	0.0	0% - 50%		
		EA029: Titratable Peroxide Acidity (23G)		2	mole H+ / t	9	8	15.4	No Limit		
		EA029: Titratable Sulfidic Acidity (23H)		2	mole H+ / t	<2	<2	0.0	No Limit		
EA029-C: Sulfur Tra	ail (QC Lot: 957197)										
EM0903402-001	TP01_0.5-0.6_PartB	EA029: KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02	<0.02	0.0	No Limit		
		EA029: Peroxide Sulfur (23De)		0.02	% S	<0.02	<0.02	0.0	No Limit		
		EA029: Peroxide Oxidisable Sulfur (23E)		0.02	% S	<0.02	<0.02	0.0	No Limit		
		EA029: acidity - Peroxide Oxidisable Sulfur		10	mole H+ / t	<10	<10	0.0	No Limit		
		(a-23E)									
EM0903402-011	TP06_0.5-0.6_PartB	EA029: KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02	<0.02	0.0	No Limit		
		EA029: Peroxide Sulfur (23De)		0.02	% S	<0.02	<0.02	0.0	No Limit		
		EA029: Peroxide Oxidisable Sulfur (23E)		0.02	% S	<0.02	<0.02	0.0	No Limit		
		EA029: acidity - Peroxide Oxidisable Sulfur		10	mole H+ / t	<10	<10	0.0	No Limit		
		(a-23E)									
EA029-D: Calcium V	/alues (QC Lot: 957197)										
EM0903402-001	TP01_0.5-0.6_PartB	EA029: KCI Extractable Calcium (23Vh)		0.02	% Ca	0.05	0.04	0.0	No Limit		
		EA029: Peroxide Calcium (23Wh)		0.02	% Ca	0.07	0.06	0.0	No Limit		

Client : FULTON HOGAN

Project : PD4008 - Kelletts Road Drain Wetland - Melbourne Water Waterways Alliance Project REBATCH EM0902848

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA029-D: Calcium V	/alues (QC Lot: 957197) -	continued							
EM0903402-001	TP01_0.5-0.6_PartB	EA029: Acid Reacted Calcium (23X)		0.02	% Ca	<0.02	<0.02	0.0	No Limit
		EA029: sulfidic - Acid Reacted Calcium (s-23X)		0.02	% S	<0.02	<0.02	0.0	No Limit
		EA029: acidity - Acid Reacted Calcium (a-23X)		10	mole H+ / t	<10	<10	0.0	No Limit
EM0903402-011	TP06_0.5-0.6_PartB	EA029: KCI Extractable Calcium (23Vh)		0.02	% Ca	0.07	0.07	0.0	No Limit
	EA029: Peroxide Calcium (23Wh)		0.02	% Ca	0.09	0.08	0.0	No Limit	
	EA029: Acid Reacted Calcium (23X)		0.02	% Ca	<0.02	<0.02	0.0	No Limit	
		EA029: sulfidic - Acid Reacted Calcium (s-23X)		0.02	% S	<0.02	<0.02	0.0	No Limit
		EA029: acidity - Acid Reacted Calcium (a-23X)		10	mole H+ / t	<10	<10	0.0	No Limit
EA029-E: Magnesiu	m Values (QC Lot: 95719	7)							
EM0903402-001	TP01_0.5-0.6_PartB	EA029: KCI Extractable Magnesium (23Sm)		0.02	% Mg	0.08	0.07	17.7	No Limit
		EA029: Peroxide Magnesium (23Tm)		0.02	% Mg	0.10	0.09	0.0	No Limit
		EA029: Acid Reacted Magnesium (23U)		0.02	% Mg	<0.02	0.02	0.0	No Limit
		EA029: sulfidic - Acid Reacted Magnesium (s-23U)		0.02	% S	0.02	0.03	0.0	No Limit
		EA029: Acidity - Acid Reacted Magnesium (a-23U)		10	mole H+ / t	16	20	22.8	No Limit
EM0903402-011	TP06 0.5-0.6 PartB	EA029: KCI Extractable Magnesium (23Sm)		0.02	% Mg	0.06	0.06	0.0	No Limit
		EA029: Peroxide Magnesium (23Tm)		0.02	% Mg	0.08	0.08	0.0	No Limit
		EA029: Acid Reacted Magnesium (23U)		0.02	% Mg	<0.02	<0.02	0.0	No Limit
		EA029: sulfidic - Acid Reacted Magnesium (s-23U)		0.02	% S	0.02	<0.02	0.0	No Limit
		EA029: Acidity - Acid Reacted Magnesium (a-23U)		10	mole H+ / t	16	10	40.8	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA029-B: Acidity Trail (QCLot: 957197)								
EA029: Titratable Actual Acidity (23F)		2	mole H+ / t	<2				
EA029: Titratable Peroxide Acidity (23G)		2	mole H+ / t	<2				
EA029: Titratable Sulfidic Acidity (23H)		2	mole H+ / t	<2				
EA029: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02				
EA029: sulfidic - Titratable Peroxide Acidity (s-23G)		0.02	% pyrite S	<0.02				
EA029: sulfidic - Titratable Sulfidic Acidity (s-23H)		0.02	% pyrite S	<0.02				
EA029-C: Sulfur Trail (QCLot: 957197)								
EA029: KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02				
EA029: Peroxide Sulfur (23De)		0.02	% S	<0.02				
EA029: Peroxide Oxidisable Sulfur (23E)		0.02	% S	<0.02				
EA029: acidity - Peroxide Oxidisable Sulfur (a-23E)		10	mole H+ / t	<10				
EA029-D: Calcium Values (QCLot: 957197)								
EA029: KCI Extractable Calcium (23Vh)		0.02	% Ca	<0.02				
EA029: Peroxide Calcium (23Wh)		0.02	% Ca	<0.02				
EA029: Acid Reacted Calcium (23X)		0.02	% Ca	<0.02				
EA029: acidity - Acid Reacted Calcium (a-23X)		10	mole H+ / t	<10				
EA029: sulfidic - Acid Reacted Calcium (s-23X)		0.02	% S	<0.02				
EA029-E: Magnesium Values (QCLot: 957197)								
EA029: KCI Extractable Magnesium (23Sm)		0.02	% Mg	<0.02				
EA029: Peroxide Magnesium (23Tm)		0.02	% Mg	<0.02				
EA029: Acid Reacted Magnesium (23U)		0.02	% Mg	<0.02				
EA029: Acidity - Acid Reacted Magnesium (a-23U)		10	mole H+ / t	<10				
EA029: sulfidic - Acid Reacted Magnesium (s-23U)		0.02	% S	<0.02				
EA029-F: Excess Acid Neutralising Capacity (QCLot: 95	57197)							
EA029: Excess Acid Neutralising Capacity (23Q)		0.02	% CaCO3	<0.02				
EA029: acidity - Excess Acid Neutralising Capacity (a-23Q)		10	mole H+ / t	<10				
EA029: sulfidic - Excess Acid Neutralising Capacity		0.02	% S	<0.02				
(s-23Q)								

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) Results are required to be reported.

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order	EM0903402	Page	: 1 of 7
Client	: FULTON HOGAN	Laboratory	: Environmental Division Melbourne
Contact	: MR JUSTIN RHODES	Contact	: Steven McGrath
Address	: 10-30 DANA COURT	Address	: 4 Westall Rd Springvale VIC Australia 3171
	DANDENONG VIC 3175		
E-mail	: justin.rhodes@melbournewater.com.au	E-mail	: steven.mcgrath@alsenviro.com
Telephone	:	Telephone	: +61-3-8549 9600
Facsimile	:	Facsimile	: +61-3-8549 9601
Project	: PD4008 - Kelletts Road Drain Wetland - Melbourne Water	QC Level	: NEPM 1999 Schedule B(3) and ALS QCS3 requirement
	Waterways Alliance Project REBATCH EM0902848		
Site	:		
C-O-C number	:	Date Samples Received	: 21-APR-2009
Sampler	: PR	Issue Date	: 23-APR-2009
Order number	:		
		No. of samples received	: 16
Quote number	: ME/363/08	No. of samples analysed	: 16

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Environmental Division Melbourne

Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withir	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA029-A: pH Measurements								
Snap Lock Bag - frozen on receipt at ALS								
TP01_0.5-0.6_PartB,	TP01_3.0-3.1_PartB,	01-APR-2009	21-APR-2009	01-APR-2010	✓	23-APR-2009	22-JUL-2009	 ✓
TP02_0.5-0.6_PartB,	TP02_2.0-2.1_PartB,							
TP03_0.5-0.6_PartB,	TP03_2.0-2.1_PartB,							
TP04_0.5-0.6_PartB,	TP04_2.0-2.1_PartB,							
TP05_0.5-0.6_PartB,	TP05_4.0-4.1_PartB,							
TP06_0.5-0.6_PartB,	TP06_3.0-3.1_PartB,							
TP06_4.0-4.1_PartB,	TP07_0.5-0.6_PartB,							
TP07_2.0-2.1_PartB,	TP07_5.0-5.1_PartB							
EA029-B: Acidity Trail								
Snap Lock Bag - frozen on receipt at ALS								
TP01_0.5-0.6_PartB,	TP01_3.0-3.1_PartB,	01-APR-2009	21-APR-2009	01-APR-2010	✓	23-APR-2009	22-JUL-2009	✓
TP02_0.5-0.6_PartB,	TP02_2.0-2.1_PartB,							
TP03_0.5-0.6_PartB,	TP03_2.0-2.1_PartB,							
TP04_0.5-0.6_PartB,	TP04_2.0-2.1_PartB,							
TP05_0.5-0.6_PartB,	TP05_4.0-4.1_PartB,							
TP06_0.5-0.6_PartB,	TP06_3.0-3.1_PartB,							
TP06_4.0-4.1_PartB,	TP07_0.5-0.6_PartB,							
TP07_2.0-2.1_PartB,	TP07_5.0-5.1_PartB							
EA029-C: Sulfur Trail								
Snap Lock Bag - frozen on receipt at ALS								
TP01_0.5-0.6_PartB,	TP01_3.0-3.1_PartB,	01-APR-2009	21-APR-2009	01-APR-2010	✓	23-APR-2009	22-JUL-2009	✓
TP02_0.5-0.6_PartB,	TP02_2.0-2.1_PartB,							
TP03_0.5-0.6_PartB,	TP03_2.0-2.1_PartB,							
TP04_0.5-0.6_PartB,	TP04_2.0-2.1_PartB,							
TP05_0.5-0.6_PartB,	TP05_4.0-4.1_PartB,							
TP06_0.5-0.6_PartB,	TP06_3.0-3.1_PartB,							
TP06_4.0-4.1_PartB,	TP07_0.5-0.6_PartB,							
TP07_2.0-2.1_PartB,	TP07_5.0-5.1_PartB							

Project : PD4008 - Kelletts Road Drain Wetland - Melbourne Water Waterways Alliance Project REBATCH EM0902848

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withir	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA029-D: Calcium Values								
Snap Lock Bag - frozen on receipt at ALS	6							
TP01_0.5-0.6_PartB,	TP01_3.0-3.1_PartB,	01-APR-2009	21-APR-2009	01-APR-2010	✓	23-APR-2009	22-JUL-2009	✓
TP02_0.5-0.6_PartB,	TP02_2.0-2.1_PartB,							
TP03_0.5-0.6_PartB,	TP03_2.0-2.1_PartB,							
TP04_0.5-0.6_PartB,	TP04_2.0-2.1_PartB,							
TP05_0.5-0.6_PartB,	TP05_4.0-4.1_PartB,							
TP06_0.5-0.6_PartB,	TP06_3.0-3.1_PartB,							
TP06_4.0-4.1_PartB,	TP07_0.5-0.6_PartB,							
TP07_2.0-2.1_PartB,	TP07_5.0-5.1_PartB							
EA029-E: Magnesium Values								
Snap Lock Bag - frozen on receipt at ALS	3							
TP01_0.5-0.6_PartB,	TP01_3.0-3.1_PartB,	01-APR-2009	21-APR-2009	01-APR-2010	✓	23-APR-2009	22-JUL-2009	 ✓
TP02_0.5-0.6_PartB,	TP02_2.0-2.1_PartB,							
TP03_0.5-0.6_PartB,	TP03_2.0-2.1_PartB,							
TP04_0.5-0.6_PartB,	TP04_2.0-2.1_PartB,							
TP05_0.5-0.6_PartB,	TP05_4.0-4.1_PartB,							
TP06_0.5-0.6_PartB,	TP06_3.0-3.1_PartB,							
TP06_4.0-4.1_PartB,	TP07_0.5-0.6_PartB,							
TP07_2.0-2.1_PartB,	TP07_5.0-5.1_PartB							
EA029-F: Excess Acid Neutralising Capac								
Snap Lock Bag - frozen on receipt at ALS								
TP01_0.5-0.6_PartB,	TP01_3.0-3.1_PartB,	01-APR-2009	21-APR-2009	01-APR-2010	✓	23-APR-2009	22-JUL-2009	 ✓
TP02_0.5-0.6_PartB,	TP02_2.0-2.1_PartB,							
TP03_0.5-0.6_PartB,	TP03_2.0-2.1_PartB,							
TP04_0.5-0.6_PartB,	TP04_2.0-2.1_PartB,							
TP05_0.5-0.6_PartB,	TP05_4.0-4.1_PartB,							
TP06_0.5-0.6_PartB,	TP06_3.0-3.1_PartB,							
TP06_4.0-4.1_PartB,	TP07_0.5-0.6_PartB,							
TP07_2.0-2.1_PartB,	TP07_5.0-5.1_PartB							
EA029-G: Retained Acidity								
Snap Lock Bag - frozen on receipt at ALS		04 455 0000	04 4 5 5 0000			00 400 0000	22 11 2000	
TP01_0.5-0.6_PartB,	TP01_3.0-3.1_PartB,	01-APR-2009	21-APR-2009	01-APR-2010	✓	23-APR-2009	22-JUL-2009	 ✓
TP02_0.5-0.6_PartB,	TP02_2.0-2.1_PartB,							
TP03_0.5-0.6_PartB,	TP03_2.0-2.1_PartB,							
TP04_0.5-0.6_PartB,	TP04_2.0-2.1_PartB,							
TP05_0.5-0.6_PartB,	TP05_4.0-4.1_PartB,							
TP06_0.5-0.6_PartB,	TP06_3.0-3.1_PartB,							
TP06_4.0-4.1_PartB,	TP07_0.5-0.6_PartB,							
TP07_2.0-2.1_PartB,	TP07_5.0-5.1_PartB							

Page	: 4 of 7
Work Order	: EM0903402
Client	: FULTON HOGAN

Project : PD4008 - Kelletts Road Drain Wetland - Melbourne Water Waterways Alliance Project REBATCH EM0902848

Matrix: SOIL					Evaluation	× = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	E	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA029-H: Acid Base Accounting								
Snap Lock Bag - frozen on receipt at ALS								
TP01_0.5-0.6_PartB,	TP01_3.0-3.1_PartB,	01-APR-2009	21-APR-2009	01-APR-2010	✓	23-APR-2009	22-JUL-2009	✓
TP02_0.5-0.6_PartB,	TP02_2.0-2.1_PartB,							
TP03_0.5-0.6_PartB,	TP03_2.0-2.1_PartB,							
TP04_0.5-0.6_PartB,	TP04_2.0-2.1_PartB,							
TP05_0.5-0.6_PartB,	TP05_4.0-4.1_PartB,							
TP06_0.5-0.6_PartB,	TP06_3.0-3.1_PartB,							
TP06_4.0-4.1_PartB,	TP07_0.5-0.6_PartB,							
TP07_2.0-2.1_PartB,	TP07_5.0-5.1_PartB							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	trix: SOIL Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification.								
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Suspension Peroxide Oxidation-Combined Acidity and	EA029	2	16	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulphate									
Method Blanks (MB)									
Suspension Peroxide Oxidation-Combined Acidity and	EA029	1	16	6.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulphate									

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspension Peroxide Oxidation-Combined Acidity and Sulphate	EA029	SOIL	Ahern et al 2004 - a suspension peroxide oxidation method following the 'sulfur trail' by determining the level of 1M KCL extractable sulfur and the sulfur level after oxidation of soil sulphides. The 'acidity trail' is followed by measurement of TAA, TPA and TSA. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.
Preparation Methods	Method	Matrix	Method Descriptions
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Appendix C Tabulated Analytical Results

Bit M Concerner of the M Bit M <th>Table D1 Kelletts</th> <th>Road Drain Wetland</th> <th></th> <th></th> <th></th> <th></th> <th>SampleCode</th> <th>EM0902848002</th> <th>EM0902848004</th> <th>EM0902848006</th> <th>EM0902848008</th> <th>EM0902848010</th> <th>EM0902848012</th> <th>EM0902848016</th> <th>EM0902848018</th> <th>EM0902848020</th> <th>EM0902848022</th> <th>EM0902848026</th> <th>EM0902848028</th>	Table D1 Kelletts	Road Drain Wetland					SampleCode	EM0902848002	EM0902848004	EM0902848006	EM0902848008	EM0902848010	EM0902848012	EM0902848016	EM0902848018	EM0902848020	EM0902848022	EM0902848026	EM0902848028
Control Control <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>TP01_0.1-0.2_PartB</th><th></th><th>artB TP01_1.0-1.1_Part</th><th>B TP01_2.0-2.1_Part</th><th></th><th>TP01_4.0-4.1_PartB</th><th>TP02_0.5-0.6_PartB</th><th>TP02_1.0-1.1_Par</th><th></th><th>B TP02_3.0-3.1_Pai</th><th>tB TP03_0.5-0.6_Part</th><th>3 TP03_1.0-1.1_PartB</th></t<>								TP01_0.1-0.2_PartB		artB TP01_1.0-1.1_Part	B TP01_2.0-2.1_Part		TP01_4.0-4.1_PartB	TP02_0.5-0.6_PartB	TP02_1.0-1.1_Par		B TP02_3.0-3.1_Pai	tB TP03_0.5-0.6_Part	3 TP03_1.0-1.1_PartB
No. 199 <							LocCode	TP01	TP01	TP01	TP01	TP01	TP01	TP02	TP02	TP02	TP02	TP03	TP03
No. Sector No. Se	0	Ohamblama	Unite	501															
Alt Alt Alt Alt Alt Alt Alt Alt Alt Alt	Chem_Group	ChemName	Units	EQL	EPA448 Fill	NEPM 1999 EIL	<u>NEPM 1999 HIL E</u>												
Alt Alt Alt Alt Alt Alt Alt Alt Alt Alt																			
Alt Alt Alt Alt Alt Alt Alt Alt Alt Alt																			
Characterie Constraint Constraint <thconstraint< th=""> Constraint Constra</thconstraint<>										1	-		-	•			-		
Bestengels Alt								-					-		_			-	-
Second base Second base																		-	-
Sold Sold <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>														-					
Margin construction No.																	-	-	-
Subscripting of a bit of		Heptachlor (including its epoxide)	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
She conderse She set She set Set																		-	-
Bis space sp																		-	-
Partic allow Partic allow																			-
phy map map <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>					,			1					-	-				-	-
New open space No. o. No. <								5.8	7.1	7.4	7.6	7.4	8.2	5.7	5.6	5.5	6.6	6.2	7.2
Proceedings Product Process Process Process Process Process Process Process Process Process Process Process Process Process Process Process Process Process Process Process Process Process Proces								2.4	4.3	5.3	7.6	5.8	6	3.2	3	3.7	6.5	3.8	5.2
martial <								1						-				-	-
Image from the set of the set o								1										-	-
Solution Description NoV. 199 No. N					20												- 4	- 3	- 2
Theore Theore Table Table <thtable< th=""> Table Table <</thtable<>								-									-	-	-
Hydery PA A PA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>								-	-	-	-	-	-	-	-	-	-	-	-
Hydery PA A PA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																			
Image Image <t< td=""><td>BTEX</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td></t<>	BTEX							1						-				-	-
New off A New off A New off A New of A								-					-		_			-	-
Mee (a) Mee (b) <								1						-					-
New New New New New New New New New New													-						
nerror nerror<								-	-	-	-	-		-		-	-	-	-
Pande Pande <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
Makare % 1 <th< td=""><td>Inorganics</td><td></td><td></td><td></td><td></td><td></td><td><u>1000</u></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Inorganics						<u>1000</u>	-	-	-	-	-	-	-	-	-	-	-	-
Lad Mathematical marked td=""><td></td><td></td><td></td><td></td><td>450</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></th<>					450	_												-	-
Math Asenic math S Math		Moisture	%	1				-	-	-		-	-	-	-	-	-	-	-
Image Image <th< td=""><td>Lead</td><td>Lead</td><td>ma/ka</td><td>5</td><td>300</td><td>600</td><td>600</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Lead	Lead	ma/ka	5	300	600	600		-	-	-	-	-	-	-	-	-	-	-
Cadmium mg/kg 1 3 3 40 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
Chemum (hexavelen) mg/s 5 1 7 200	Metals				20	20		-	-	-	-	-	-	-	-	-	-	-	-
Coper mg/ng 5. 100 200					-	Ů											-	-	-
Meroary mg/sq 0.1 1 7 3.2 1.0 0.1.0																		-	-
Molydarum mgkg 2 40 mode mode <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></th<>																		-	-
Nicki mg/s 2 60 60 60 - <th< td=""><td></td><td></td><td></td><td></td><td></td><td>,</td><td>00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></th<>						,	00											-	-
Silver mpkg 2 10 weight 5 0						60	600	-	-		-			-	-		-	-	-
In mykg 5 80 mode In In <th< td=""><td></td><td></td><td>mg/kg</td><td>5</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>			mg/kg	5				-	-	-	-	-	-	-	-	-	-	-	-
Zinc m/m 5 200 200 14000 ···· International Internation International Interna								1			-			-				-	-
AddrinMarka <th< td=""><td></td><td></td><td></td><td></td><td></td><td>200</td><td>14000</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td></th<>						200	14000				-			-			-	-	-
a-BrC mg/kg 0.03 mg/kg mg/kg mg/kg mg/k			шу/кд	3	200	200	14000	-	-	-	-	-	-	-	-	-		-	-
a-BrC mg/kg 0.03 mg/kg mg/kg mg/kg mg/k	OCP	4,4-DDE	mg/kq	0.05				-	-	-	-	-	-	-	-	-	-	-	-
Altrin + Dieldrin mg/kg 0.03 20 20 - I		a-BHC	mg/kg	0.03				-	-		-	-		-	-	-	-	-	-
bHC mgkg 0.03 odd odd <th< td=""><td></td><td></td><td>mg/kg</td><td>0.03</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td></th<>			mg/kg	0.03				1					-	-			-	-	-
chlordane mg/kg 0.03 100 -							20	-					-		-		-	-	-
Chlordane (cis) mg/kg 0.03 100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100</td> <td>1</td> <td></td>							100	1											
Chlordane (trans) mg/kg 0.03 odd								-							_				-
d-BHC mg/kg 0.03 o <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></t<>							100											-	-
DDmg/s0.5MM <td></td> <td>d-BHC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>		d-BHC						-	-	-	-	-	-	-	-	-	-	-	-
DDT+DDE+DDD mg/kg 0.05 M 400 M		DDD	mg/kg	0.05				-		-	-			-		-	-	-	-
Dieldrinmg/kg0.03od <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>																		-	-
Endosulfan I mg/kg 0.03 Image: Second							400											-	-
Endosulfan II mg/kg 0.03 Image																			-
Endosulfan sulphate mg/kg 0.03 and a																			
Endrin m/kg 0.03 Image: second																		-	-
g-BHC (Lindane) mg/kg 0.03 mg/kg		Endrin	mg/kg	0.03														-	-
								-	-	-	-	-	-	-	-	-	-	-	-
																		-	-
							20	-	-	-	-	-	-	-	-	-		-	-
Heptachlor epoxide mg/kg 0.03 Image: Marcine Stress of the stress of																		-	-

Table D1 Kellette	s Road Drain Wetland					SampleCode	EM0902848002	EM0902848004	EM0902848006	EM0902848008	EM0902848010	EM0902848012	EM0902848016	EM0902848018	EM0902848020	EM0902848022	EM0902848026	EM0902848028
Melbourne Wate						Field_ID			B TP01_1.0-1.1_PartB								3 TP03_0.5-0.6_PartB	
						LocCode	TP01	TP01	TP01	TP01	TP01	TP01	TP02	TP02	TP02	TP02	TP03	TP03
Chem_Group	ChemName	Units	FOI	EPA448 Fill	NEPM 1999 EIL	NEPM 1999 HIL E	1											
Chem_Group	Chennyanie	onna	LQL	LF A440 FIII	NEI III 1333 EIE													
	Mathewaller		0.02															
	Methoxychlor	mg/kg	0.03		-		-	-	-	-	-	-	-	-	-	-	-	
PAH/Phenols	2,4,5-trichlorophenol	mg/kg	0.05				-	-	-	-	-	-	-	-	-	-	-	-
	2,4-dichlorophenol	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	-
	2,4-dimethylphenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	2-chlorophenol 2-methylphenol	mg/kg mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	3-&4-methylphenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Acenaphthene	mg/kg				<u>40</u>	-	-	-	-	-	-	-	-	-	-	-	-
	Acenaphthylene	mg/kg				<u>40</u>	-	-	-	-	-	-	-	-	-	-	-	-
-	Anthracene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Benz(a)anthracene Benzo(a) pyrene	mg/kg mg/kg				<u>40</u> 2	-	-	-	-	-	-	-	-	-	-		-
	Benzo(b)&(k)fluoranthene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Benzo(g,h,i)perylene	mg/kg	0.5			40	-	-	-	-	-	-	-	-	-	-	-	-
	Chrysene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Dibenz(a,h)anthracene Fluoranthene	mg/kg mg/kg				<u>40</u> 40	-	-	-	-	-	-	-	-	-	-		-
	Fluorene	mg/kg				40	-	-	-	-	-	-	-	-	-			-
	Indeno(1,2,3-c,d)pyrene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Naphthalene	mg/kg	0.5			40	-	-	-	-	-	-	-	-	-	-	-	-
	Phenanthrene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Phenol Pyrene	mg/kg				<u>17000</u> 40	-	-	-	-	-	-	-	-	-	-	-	-
	Fylene	iiig/kg	0.5			40	-	-	-	-	-		-	-	-		-	
PCB	PCBs (Sum of total)	mg/kg	0.1	2		20	-	-	-	-	-	-	-	-	-	-	-	-
																		1
SVOC	2,4,6-trichlorophenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	2,4-dinitrophenol 2,6-dichlorophenol	mg/kg mg/kg			-		-	-	-	-	-	-	-	-	-	-	-	-
	2-nitrophenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	4,6-Dinitro-2-methylphenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	4-chloro-3-methylphenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	4-nitrophenol	mg/kg					-	-	-	-	-	-	-	-	-	-		-
	Pentachlorophenol	mg/kg	0.2				-	-	-	-	-	-	-	-	-	-		-
TPH	TPH C 6 - C 9 Fraction	mg/kg	10	100			-	-	-	-	-	-	-	-	-	-	-	-
	TPH C10 - C14 Fraction	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	TPH C15 - C28 Fraction	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	TPH C29-C36 Fraction TPH+C10 - C36 (Sum of total)	mg/kg mg/kg					-	-	-	-	-	-	-	-	-	-		-
		iiig/kg	50	1000				-	-	-	-	-	-	-	-		-	
VOC	1,1,1,2-tetrachloroethane	mg/kg	0.01				-	-	-	-	-	-	-	-	-	-	-	-
	1,1,1-trichloroethane	mg/kg	0.01				-	-	-	-	-	-	-	-	-	-	-	-
	1,1,2,2-tetrachloroethane	mg/kg mg/kg					-	-	-	-	-	-	-	-	-			-
	1,1-dichloroethene	mg/kg					-	-	-	-	-	-	-	-	-		-	-
-	1,2,4-trichlorobenzene	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dichlorobenzene	mg/kg	0.02				-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dichloroethane	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	1,4-dichlorobenzene Carbon tetrachloride	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Chlorobenzene	mg/kg					-		-	-	-	-	-	-	-	-	-	-
	Chloroform	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	cis-1,2-dichloroethene	mg/kg	0.01				-	-	-	-	-	-	-	-	-	-	-	-
l	Dichloromethane	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorobutadiene Styrene	mg/kg					-	-		-	-	-	-	-	-	-	-	-
	TCE	mg/kg					-	-	-	-			-	-	-	-	-	-
	Tetrachloroethene	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	trans-1,2-dichloroethene	mg/kg	0.02				-	-	-	-	-	-	-	-	-	-	-	-
L	Vinyl chloride	mg/kg	0.02				-	-	-	-	-	-	-	-	-	-	-	-

Table D1 Kellett	s Road Drain Wetland					SampleCode	EM0902848030	EM0902848032	EM0902848034	EM0902848038	EM0902848040	EM0902848042	EM0902848044	EM0902848046	EM0902848050	EM0902848052	EM0902848054	EM0902848056
Melbourne Wate						Field_ID	TP03_2.0-2.1_PartE		artB TP03_4.0-4.1_Pa			TP04_2.0-2.1_PartB						B TP05_3.0-3.1_PartB
						LocCode	TP03	TP03	TP03	TP04	TP04	TP04	TP04	TP04	TP05	TP05	TP05	TP05
Chem_Group	ChemName	Units	EQL	EPA448 Fill	NEPM 1999 EIL	NEPM 1999 HIL E												
	2,3,5,6-Tetrachlorophenol	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	-
	2.3.4.5 & 2.3.4.6-Tetrachlorophenol						-	-	-	-	-	-	-	-	-	-	-	-
	4,6-Dinitro-o-cyclohexyl phenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Chlorinated hydrocarbons	mg/kg		1			-	-	-	-	-	-	-	-	-	-	-	-
	Dinoseb	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Heptachlor (including its epoxide)	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Monocylic aromatic hydrocarbons	mg/kg		7			-	-	-	-	-	-	-	-	-	-	-	-
	Organochlorine pesticides	mg/kg		1			-	-	-	-	-	-	-	-	-	-	-	-
	Other chlorinated hydrocarbons	mg/kg					-	-	-	-	-	-	-	-	-	-		-
	Other organochlorine pesticides	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	-
	PAH Total (NSW, 1999)	mg/kg	0.1				-	-	-	-	-	-		- 7.5	-	-	-	-
	pH (F)	mg/kg					7.2 5.8	7.4	7.5	6.5	7.4	7.4	7.4	7.5 6.5	6.2	6.9 4.7	6.9 5.7	6.9 6.9
	pH (Fox) Phenols (non-halogenated)	mg/kg mg/kg	1	60			- 5.8	-	-	-		-	-	-	-	-	-	-
	Phenols(halogenated)	mg/kg	-	1			-	-	-			-	-	-			-	
	Polycylic aromatic hydrocarbons	mg/kg		20			-		-								-	
	Reaction Rate	mg/kg					2	2	1	3	1	2	1	2	3	2	2	2
	Scheduled Chemicals (NSW, 1999)	mg/kg					-	-	-	-	-	-	-	-		-	-	-
	Trihalomethanes (ADW 2004)	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
BTEX	Benzene	mg/kg	0.2	1			-	-	-	-	-	-	-	-	-	-	-	-
	Ethylbenzene	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Toluene	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Xylene (m & p)	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Xylene (o)	mg/kg	0.5				-	-	-	-	-	-	-	-	-	-	-	-
	Xylene Total	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
Increanico	Cyanide Total		1	50		1000												
Inorganics	Fluoride	mg/kg mg/kg				1000	-	-			-	-	-	-	-	-	-	-
	Moisture	111g/kg %	40	450			-											
	Molature	70					-			-	-	-	-		-	-		-
Lead	Lead	mg/kg	5	300	600	600	-	-	-	-	-	-	-	-	-	-	-	-
			-															
Metals	Arsenic	mg/kg	5	20	20	200	-	-	-	-	-	-	-	-	-	-	-	-
	Cadmium	mg/kg		3	3	40	-	-	-	-	-	-	-	-	-	-	-	-
	Chromium (hexavalent)	mg/kg	0.5	1	1	200	-	-	-	-	-	-	-	-	-	-	-	-
	Copper	mg/kg		100	100	<u>2000</u>	-	-	-	-	-	-	-	-	-	-	-	-
	Mercury	mg/kg		1	1	<u>30</u>	-	-	-	-	-	-	-	-	-	-	-	-
	Molybdenum	mg/kg		40			-	-	-	-	-	-	-	-	-	-	-	-
	Nickel	mg/kg		60	60	<u>600</u>	-	-	-	-	-	-	-	-	-	-	-	-
	Selenium	mg/kg	5	10			-	-	-	-	-	-	-	-	-	-	-	-
	Silver Tin	mg/kg	2	10 50			-	-	-	-	-	-	-	-	-	-	-	-
	Zinc	mg/kg mg/kg		200	200	14000	-	-	-	-	-	-	-	-	-	-	-	-
		iiig/kg	5	200	200	1-000	-	-	-	-	-	-	-	-	-	-	-	-
OCP	4,4-DDE	mg/kg	0.05				-	-	-	-	-	-	-	-	-	-	-	-
-	a-BHC	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	-
	Aldrin	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	-
	Aldrin + Dieldrin	mg/kg	0.03			<u>20</u>	-	-	-	-	-	-	-	-	-	-	-	-
	b-BHC	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	chlordane	mg/kg				<u>100</u>	-	-	-	-	-	-	-	-	-	-	-	-
	Chlordane (cis)	mg/kg				<u>100</u>	-	-	-	-	-	-	-	-		-	-	-
	Chlordane (trans)	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	d-BHC	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	DDD DDT	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	DDT+DDE+DDD	mg/kg				400	-	-		-		-	-	-	-		-	-
	DDT+DDE+DDD Dieldrin	mg/kg mg/kg				400	-	-	-	-	-	-	-	-	-	-	-	-
	Endosulfan I	mg/kg					-		-		-	-	-	-				
	Endosulfan II	mg/kg					-					-		-			-	
	Endosulfan sulphate	mg/kg					-						-				-	
	Endrin	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Endrin aldehyde	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	g-BHC (Lindane)	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Heptachlor	mg/kg				20	-	-	-	-	-	-	-	-	-	-	-	-
	Heptachlor epoxide	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-

But But <th>hla D1 Kallatta I</th> <th>Road Drain Wetland</th> <th></th> <th></th> <th></th> <th></th> <th>SampleCode</th> <th>EM0902848030</th> <th>EM0902848032</th> <th>EM0902848034</th> <th>EM0902848038</th> <th>EM0902848040</th> <th>EM0902848042</th> <th>EM0902848044</th> <th>EM0902848046</th> <th>EM0902848050</th> <th>EM0902848052</th> <th>EM0902848054</th> <th>EM0902848056</th>	hla D1 Kallatta I	Road Drain Wetland					SampleCode	EM0902848030	EM0902848032	EM0902848034	EM0902848038	EM0902848040	EM0902848042	EM0902848044	EM0902848046	EM0902848050	EM0902848052	EM0902848054	EM0902848056
							LocCode	TP03	TP03	TP03	TP04	TP04	TP04	TP04	TP04	TP05	TP05	TP05	TP05
Norm Norm <th< th=""><th>om Group</th><th>ChomNamo</th><th>Unite</th><th>EOI</th><th></th><th>NEPM 1000 EII</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	om Group	ChomNamo	Unite	EOI		NEPM 1000 EII													
	lem_Group		Units	EQL	EFA440 FIII		INCENT 1999 HILLE												
		Methoxychlor	ma/ka	0.03					-		-	-	-	-	-	-	-	-	<u> </u>
Additional and a set of the set			ing/kg	0.00															-
Ad-backedor Add.								-	-	-	-	-	-	-	-	-	-	-	-
photogram ph				0.03				1				-					-		-
Sector Sector				0.03															-
Acceltore App	4	2-methylphenol	mg/kg	1															-
Measuration Measuration				1			40												-
Minage Minage<								1											-
Bis degree week Bis degre																			-
Secold Virtuaries minipal R N </th <td></td> <th></th> <td>mg/kg</td> <td>0.5</td> <td></td> <td></td> <td>40</td> <td>-</td>			mg/kg	0.5			40	-	-	-	-	-	-	-	-	-	-	-	-
Beckil Algent Bysic							2	1											-
Convers Open Des Des <thdes< th=""> Des <thdes< th=""> <thdes<< th=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></thdes<<></thdes<></thdes<>																			-
Discis later and marked Discis later and marked																			-
bases make make <t< th=""><td>[</td><th>Dibenz(a,h)anthracene</th><td>mg/kg</td><td></td><td></td><td></td><td>40</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	[Dibenz(a,h)anthracene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
brief Adjourne main 0.0 <																			-
Nucleary Short																			-
Procentione Physical																			-
Part Part									-		-	-			-		-	-	-
PCB PCB Cond Made PCB								1	-		-	-			-		-		-
Process Process <t< th=""><td></td><th>Pyrene</th><td>mg/kg</td><td>0.5</td><td></td><td></td><td>40</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>		Pyrene	mg/kg	0.5			40	-	-	-	-	-	-	-	-	-	-	-	-
Process Process <t< th=""><td>CB I</td><th>PCBs (Sum of total)</th><td>ma/ka</td><td>0.1</td><td>2</td><td></td><td>20</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td></t<>	CB I	PCBs (Sum of total)	ma/ka	0.1	2		20		-	-	-	-	-	-	-	-	-		-
2.4-denicyphend maks 6 M		ese (cam of total)	ing/itg	0.1	_														-
2.6 definityphend mghg 0.00 0.								1				-					-	-	-
2 altage mp3 1 mode mode <th< th=""><td></td><th></th><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td></th<>				-													-		-
4.6-0mbs/2-methylpmol mgk 6 image																			-
Antiophend mg/ng 5 mail mining				5													-		-
Pertachlorophanol mg/hg 2.2 and </td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td>															-	-	-		-
PH PL <								1							-				-
TH C1 - C1 Fraction mg/s 50 A		entachiorophenol	iiig/kg	0.2				-			-	-	-	-	-	-	-		
TPH C3- C32 Fraction mg/s 100 Image Image <td>'H</td> <th>TPH C 6 - C 9 Fraction</th> <td>mg/kg</td> <td>10</td> <td>100</td> <td></td> <td></td> <td>-</td>	'H	TPH C 6 - C 9 Fraction	mg/kg	10	100			-	-	-	-	-	-	-	-	-	-	-	-
TPH C20-C36 Fracion mpkg 100 Image Image Image								-	-	-	-	-	-	-	-	-	-	-	-
IPH-C10-C36 (Sum Otal) mg/g 50 1000 net net <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>																			-
VAC 1,1,2-tertachloreethane mg/s 0.1 C <thc< th=""> C <thc< th=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></thc<></thc<>																			-
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.																			1
11.22-tertachlorethane mg/kg 0.02 mg/kg 0.02 mg/kg 0.04 mg/kg 0.01 mg/kg 0.02 mg/kg 0.01 mg/kg 0.02 mg/kg <td></td> <th>111</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>		111																	-
11.24tichlorodetane mg/kg 0.04 ms																			-
11-dichlorodenzene mg/kg 0.01 ms																			-
1.2-dichlorobenzene mg/kg 0.02 Image: mg/kg Image: mg/kg <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td>																-	-		-
12-dichlorestanem/kg0.020.020.020.010.0								1				-			-				-
1.4-dichlorobenzenemg/kg0.02MM <td></td> <th>1</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td>		1						1				-			-				-
Carbon tetrachloride mg/kg 0.01 M <th< th=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>								1											-
Chlorobenzene mg/g 0.02 and	(Carbon tetrachloride	mg/kg	0.01				1	-								-		-
loc is 1,2 dichloroethenemg/kg0.01Image: second se			mg/kg	0.02															-
Dickloromethane mg/kg 0.4 odd odd <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								1				-							-
Hexachlorobutadiene mg/kg 0.02 Image: Margine mg/kg <th< th=""><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td></th<>								1									-		-
Styrene mg/g 0.5 odd od								1				-							-
Tetrachloroethene mg/kg 0.02 mg/kg <td></td> <th></th> <td>mg/kg</td> <td></td> <td>-</td>			mg/kg																-
trans-1,2-dichloroethene mg/kg 0.02 m g/kg								-											-
																			-
Vinyl chloride mg/kg 0.02		/inyl chloride																	-

Table D1 Kellett	s Road Drain Wetland					SampleCode	EM0902848058	EM0902848060	EM0902848064	EM0902848066	EM0902848068	EM0902848070	EM0902848072	EM0902848074	EM0902848078	EM0902848080	EM0902848082	EM0902848084
Melbourne Wate						Field_ID	TP05_4.0-4.1_PartE		artB TP06_0.5-0.6_Par			TP06_3.0-3.1_PartB						B TP07_3.0-3.1_Part
						LocCode	TP05	TP05	TP06	TP06	TP06	TP06	TP06	TP06	TP07	TP07	TP07	TP07
<u> </u>		1.1.1.	501															
Chem_Group	ChemName	Units	EQL	EPA448 Fill	NEPM 1999 EIL	NEPM 1999 HIL E												
	2,3,5,6-Tetrachlorophenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	2.3.4.5 & 2.3.4.6-Tetrachlorophenol						-	-	-	-	-	-	-	-	-	-	-	-
	4,6-Dinitro-o-cyclohexyl phenol Chlorinated hydrocarbons	mg/kg mg/kg		1			-	-				-	-	-	-	-	-	-
	Dinoseb	mg/kg		-					-		-	-			-	-		
	Heptachlor (including its epoxide)	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Monocylic aromatic hydrocarbons	mg/kg		7			-	-	-	-	-	-	-	-	-	-	-	-
	Organochlorine pesticides	mg/kg		1			-	-	-	-	-	-	-	-	-	-	-	-
	Other chlorinated hydrocarbons	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Other organochlorine pesticides PAH Total (NSW, 1999)	mg/kg mg/kg	0.03				-	-			-	-	-	-	-	-		-
	pH (F)	mg/kg	0.1				7.1	7.3	6.6	6.5	6.7	7	7.8	7.6	6.5	7.4	7.6	7.5
	pH (Fox)	mg/kg					5.4	5.1	3.6	3.9	7.2	5.1	5.5	5.5	3.7	5.3	5.5	5.8
	Phenols (non-halogenated)	mg/kg	1	60			-	-	-	-	-	-	-	-	-	-	-	-
	Phenols(halogenated)	mg/kg		1			-	-	-	-	-	-	-	-	-	-	-	-
	Polycylic aromatic hydrocarbons Reaction Rate	mg/kg		20			- 2	- 1	- 3	- 2	- 1	- 2	- 2	- 2	- 3	- 2	- 2	- 2
	Scheduled Chemicals (NSW, 1999)	mg/kg mg/kg					- 2	-	-	- 2	-	-	-	- 2	-	- 2	- 2	- 2
	Trihalomethanes (ADW 2004)	mg/kg	1				-	-	-	-	-	-	-	-	-	-	-	-
BTEX	Benzene	mg/kg		1			-	-	-	-	-	-	-	-	-	-	-	-
	Ethylbenzene	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Toluene Xylene (m & p)	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Xylene (o)	mg/kg mg/kg					-	-		-	-	-	-	-	-	-	-	
	Xylene Total	mg/kg	0.0				-	-	-	-	-	-	-	-	-	-	-	-
Inorganics	Cyanide Total	mg/kg		50		<u>1000</u>	-	-	-	-	-	-	-	-	-	-	-	-
	Fluoride	mg/kg		450			-	-	-	-	-	-	-	-	-	-	-	-
	Moisture	%	1				-	-	-	-	-	-	-	-	-	-	-	-
Lead	Lead	mg/kg	5	300	600	600	-	-	-	-	-	-	-	-	-	-	-	-
_000	Lead	iiig/kg	- J	500	000	000	-					-						
Metals	Arsenic	mg/kg	5	20	20	200	-	-	-	-	-	-	-	-	-	-	-	-
	Cadmium	mg/kg		3	3	<u>40</u>	-	-	-	-	-	-	-	-	-	-	-	-
	Chromium (hexavalent)	mg/kg		1	1	200	-	-	-	-	-	-	-	-	-	-	-	-
	Copper Mercury	mg/kg		<u>100</u> 1	100	<u>2000</u> 30	-	-			-	-	-	-	-	-	-	-
	Molybdenum	mg/kg mg/kg		40	1	<u> </u>					-	-			-	-		
	Nickel	mg/kg		60	60	600	-	-	-	-	-	-	-	-	-	-	-	-
-	Selenium	mg/kg	5	10			-	-	-	-	-	-	-	-	-	-	-	-
	Silver	mg/kg		10			-	-	-	-	-	-	-	-	-	-	-	-
	Tin	mg/kg	5	50	000	14000	-	-	-	-	-	-	-	-	-	-	-	-
	Zinc	mg/kg	5	200	200	<u>14000</u>	-	-	-	-	-	-	-	-	-	-	-	-
OCP	4,4-DDE	mg/kg	0.05				-	-	-	-	-	-	-	-	-	-	-	-
· · · · · ·	a-BHC	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	-
	Aldrin	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	-
	Aldrin + Dieldrin	mg/kg	0.03			20	-	-	-	-	-	-	-	-	-	-	-	-
	b-BHC chlordane	mg/kg				100	-	-	-	-	-	-	-	-	-		-	-
	Chlordane (cis)	mg/kg mg/kg				100	-	-	-	-	-	-	-	-		-		-
	Chlordane (trans)	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	d-BHC	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	-
	DDD	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	DDT	mg/kg				400	-	-	-	-	-	-	-	-	-	-	-	-
	DDT+DDE+DDD Dieldrin	mg/kg				400	-	-	-	-	-	-	-	-	-		-	-
	Endosulfan I	mg/kg mg/kg					-	-	-		-	-	-	-			-	-
	Endosulfan II	mg/kg					-	-	-	-	-	-	-	-	-		-	-
	Endosulfan sulphate	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Endrin	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	-
	Endrin aldehyde	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
							-	-	-	-	-	-	-	-	-	-	-	-
	g-BHC (Lindane)	mg/kg				20												
	g-BHC (Lindane) Heptachlor Heptachlor epoxide	mg/kg mg/kg mg/kg	0.03			20		-		-			-	-	-	-	-	-

Table D1 Kellette	Road Drain Wetland					SampleCode	EM0902848058	EM0902848060	EM0902848064	EM0902848066	EM0902848068	EM0902848070	EM0902848072	EM0902848074	EM0902848078	EM0902848080	EM0902848082	EM0902848084
Melbourne Wate						Field_ID	TP05_4.0-4.1_PartB						TP06_4.0-4.1_PartB			TP07_1.0-1.1_Part		
						LocCode	TP05	TP05	TP06	TP06	TP06	TP06	TP06	TP06	TP07	TP07	TP07	TP07
Chem_Group	ChemName	Units	EOI	EPA448 Fill	NEPM 1999 EIL	NEPM 1999 HIL E												
Chem_Group	Cheminame	Units	EQL	EFA440 FIII	NEFW 1999 LIE	INEPIN 1999 HILE												
	Methoxychlor	mg/kg	0.03				-	-	-	-	-	-	-	-	-	-	-	<u> </u>
		mg/ng	0.00															-
PAH/Phenols	2,4,5-trichlorophenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	2,4-dichlorophenol 2,4-dimethylphenol	mg/kg mg/kg					-			-	-	-	-	-	-	-	-	-
	2-chlorophenol	mg/kg					-	-	-	-	-	-	-	-		-	-	-
	2-methylphenol	mg/kg	1				-	-	-	-	-	-	-	-	-	-	-	-
	3-&4-methylphenol	mg/kg				40				-	-	-	-	-	-			
	Acenaphthene Acenaphthylene	mg/kg				<u>40</u> 40	-	-		-	-	-	-	-	-			-
	Anthracene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Benz(a)anthracene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Benzo(a) pyrene Benzo(b)&(k)fluoranthene	mg/kg mg/kg				<u>2</u> 40				-	-	-	-	-	-	-		-
	Benzo(g,h,i)perylene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Chrysene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Dibenz(a,h)anthracene Fluoranthene	mg/kg mg/kg				<u>40</u> 40	-	-	-	-	-	-	-	-	-	-	-	-
	Fluorene	mg/kg				40	-	-		-	-	-	-	-	-	-		
	Indeno(1,2,3-c,d)pyrene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
-	Naphthalene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	Phenanthrene Phenol	mg/kg mg/kg				<u>40</u> 17000	-	-		-	-	-	-	-	-	-	-	-
	Pyrene	mg/kg				40	-	-	-	-	-	-	-	-	-	-	-	-
	· · ·																	
PCB	PCBs (Sum of total)	mg/kg	0.1	2		<u>20</u>	-	-	-	-	-	-	-	-	-	-	-	-
SVOC	2,4,6-trichlorophenol	mg/kg	0.05				-	-	-	-	-	-	-	-	-	-	-	-
	2,4-dinitrophenol	mg/kg	5				-	-	-	-	-	-	-	-	-	-	-	-
	2,6-dichlorophenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
-	2-nitrophenol 4,6-Dinitro-2-methylphenol	mg/kg			-				-	-	-	-	-	-	-		-	-
	4-chloro-3-methylphenol	mg/kg		;			-	-	-	-	-	-	-	-	-	-	-	-
	4-nitrophenol	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Pentachlorophenol	mg/kg	0.2				-	-	-	-	-	-	-	-	-	-	-	-
TPH	TPH C 6 - C 9 Fraction	mg/kg	10	100			-	-	-	-	-	-	-	-	-	-	-	-
	TPH C10 - C14 Fraction	mg/kg	50				-	-	-	-	-	-	-	-	-	-	-	-
	TPH C15 - C28 Fraction	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
-	TPH C29-C36 Fraction TPH+C10 - C36 (Sum of total)	mg/kg mg/kg			-				-	-	-		-	-	-			-
	in the lot (can be total)	mgrig	00	1000														
VOC	1,1,1,2-tetrachloroethane	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	1,1,1-trichloroethane 1,1,2,2-tetrachloroethane	mg/kg mg/kg							-	-	-	-	-	-	-	-	-	-
	1,1,2-trichloroethane	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	1,1-dichloroethene	mg/kg	0.01				-	-	-	-	-	-	-	-	-	-	-	-
	1,2,4-trichlorobenzene	mg/kg							-	-	-		-	-	-			-
	1,2-dichloroethane	mg/kg					-		-	-	-	-	-	-	-		-	-
	1,4-dichlorobenzene	mg/kg	0.02				-	-	-	-	-	-	-	-	-	-	-	-
	Carbon tetrachloride	mg/kg	0.01				-	-	-	-	-	-	-	-	-	-	-	-
	Chlorobenzene Chloroform	mg/kg mg/kg							-	-	-	-	-	-	-		-	-
	cis-1,2-dichloroethene	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Dichloromethane	mg/kg	0.4				-	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorobutadiene	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Styrene TCE	mg/kg mg/kg						-	-	-	-	-	-	-	-	-	-	-
	Tetrachloroethene	mg/kg	0.02				-	-	-	-	-	-	-	-	-	-	-	-
	trans-1,2-dichloroethene	mg/kg					-	-	-	-	-	-	-	-	-	-	-	-
	Vinyl chloride	mg/kg	0.02				-	-	-	-	-	-	-	-	-	-	-	-

Table D1 Kelletts	s Road Drain Wetland					SampleCode	EM0902848086	EM0902848088	EM0902969001	EM0902969002	EM0902969003	EM0902969004	EM0902969005	EM0902969006	EM0902969007	EM0902969008	EM0902969009
Melbourne Wate						Field_ID		TP07_5.0-5.1_PartB				A TP02_3.0-3.1_PART A				A TP04_4.0-4.1_PART A	
						LocCode	TP07	TP07	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05
Chem_Group	ChemName	Units	EQL	EPA448 Fill	NEPM 1999 EIL	NEPM 1999 HIL E											
	2,3,5,6-Tetrachlorophenol	mg/kg	0.03				-	-	-	< 0.03	< 0.03	-	< 0.03	-	< 0.03	-	< 0.03
	2.3.4.5 & 2.3.4.6-Tetrachlorophenol		0.05				-	-	-	< 0.05	< 0.05	-	< 0.05	-	< 0.05	-	< 0.05
	4,6-Dinitro-o-cyclohexyl phenol	mg/kg	5				-	-	-	<5	<5	-	<5	-	<5	-	<5
	Chlorinated hydrocarbons	mg/kg	0.01	1			-	-	-	<0.01	<0.01	-	<0.01	-	<0.01	-	<0.01
	Dinoseb	mg/kg	5				-	-	-	<5	<5	-	<5	-	<5	-	<5
	Heptachlor (including its epoxide)	mg/kg		_			-	-	-	<0.06	<0.06	-	<0.06	-	<0.06	-	<0.06
	Monocylic aromatic hydrocarbons Organochlorine pesticides	mg/kg	0.2	7			-	-	-	<0.2 <0.03	<0.2 <0.03		<0.2 <0.03	-	<0.2 <0.03	-	<0.2 <0.03
	Other chlorinated hydrocarbons	mg/kg mg/kg	0.03	1				-	-	<0.03	<0.03		<0.03		<0.03		<0.03
	Other organochlorine pesticides	mg/kg					-	-	-	<0.03	<0.03		<0.03	-	<0.03	-	<0.03
	PAH Total (NSW, 1999)	mg/kg	0.00				-	-	-	<6.5	<6.5	-	<6.5	-	<6.5	-	<6.5
	pH (F)	mg/kg	0.1				7.5	7.5	-	-	-	-	-	-	-	-	-
	pH (Fox)	mg/kg	0.1				5.6	5.8	-	-	-	-	-	-	-	-	-
	Phenols (non-halogenated)	mg/kg	1	60			-	-	-	<1	<1	-	<1	-	<1	-	<1
	Phenols(halogenated)	mg/kg	0.03	1			-	-	-	<0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	Polycylic aromatic hydrocarbons	mg/kg	0.5	20	-			-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Reaction Rate	mg/kg	1				1	1	-	-	-	-	-	-	-	-	-
	Scheduled Chemicals (NSW, 1999) Trihalomethanes (ADW 2004)	mg/kg mg/kg					-	-	-	<0.67 <0.02	<0.67 <0.02		<0.67 <0.02	-	<0.67 <0.02	-	<0.67 <0.02
		mg/kg						-	-	<0.0Z	<0.02	-	NU.UZ	-	<0.02	-	<0.02
BTEX	Benzene	mg/kg	0.2	1			-	-	-	<0.2	<0.2	-	<0.2	-	<0.2	-	<0.2
512/	Ethylbenzene	mg/kg	0.5	•			-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Toluene	mg/kg	0.5				-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Xylene (m & p)	mg/kg	0.5				-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Xylene (o)	mg/kg	0.5				-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Xylene Total	mg/kg					-	-	-	<1	<1	-	<1	-	<1	-	<1
						4000		-		· · ·							· · ·
Inorganics	Cyanide Total Fluoride	mg/kg	1 40	50 450		<u>1000</u>	-	-	-	<1 90	<1 60	-	<1 100	-	<1 50	-	1 90
	Moisture	mg/kg %	40	450	-		-	-	- 11.2	17.7	25.3	- 16.6	30	- 19.1	11.9	- 17.9	11.3
	Wolstare	/0					-	-	11.2	17.7	23.3	10.0		19.1	11.5	17.5	11.5
Lead	Lead	mg/kg	5	300	600	600	-	-	10	10	11	7	10	11	10	6	19
		5 5															
Metals	Arsenic	mg/kg	5	20	20	200	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Cadmium	mg/kg	1	3	3	40	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Chromium (hexavalent)	mg/kg		1	1	200	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Copper	mg/kg	5	100	100	2000	-	-	7	9	8	5	9	10	6	6	8
	Mercury Molybdenum	mg/kg mg/kg	0.1	1 40	1	<u>30</u>	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Nickel	mg/kg	2	60	60	600		-	5	8	4	5	9	7	4	5	4
	Selenium	mg/kg	5	10	00	000	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Silver	mg/kg	2	10			-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
	Tin	mg/kg	5	50			-	-	-	<5	<5	-	<5	-	<5	-	<5
	Zinc	mg/kg	5	200	200	<u>14000</u>	-	-	<5	11	5	7	8	12	<5	13	15
OCP	4,4-DDE	mg/kg	0.05				-	-	-	<0.05	< 0.05	-	<0.05	-	< 0.05	-	<0.05
	a-BHC	mg/kg	0.03				-	-	-	<0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	Aldrin Aldrin + Dieldrin	mg/kg mg/kg	0.03			20	-	-	-	<0.03	<0.03 <0.03	-	<0.03 <0.03	-	<0.03 <0.03		<0.03
	b-BHC	mg/kg	0.03			20	-	-	-	<0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	chlordane	mg/kg				100	-	-	-	<0.03	<0.03		<0.03		<0.03		<0.03
	Chlordane (cis)	mg/kg				100	-	-	-	<0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	Chlordane (trans)	mg/kg					-	-	-	<0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	d-BHC	mg/kg	0.03				-	-	-	<0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	DDD	mg/kg	0.05				-	-	-	<0.05	<0.05	-	<0.05	-	<0.05	-	<0.05
	DDT	mg/kg	0.05				-	-	-	<0.05	< 0.05	-	<0.05	-	< 0.05	-	< 0.05
	DDT+DDE+DDD Distation	mg/kg	0.05			<u>400</u>	-	-	-	<0.05	<0.05	-	<0.05	-	<0.05	-	<0.05
	Dieldrin Endoculfon I	mg/kg	0.03				-	-	-	< 0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	Endosulfan I	mg/kg	0.03				-	-	-	<0.03	<0.03		<0.03	-	<0.03	-	<0.03
	Endosulfan II Endosulfan sulphate	mg/kg mg/kg					-	-	-	<0.03 <0.03	<0.03 <0.03	-	<0.03 <0.03	-	<0.03 <0.03	-	<0.03 <0.03
	Endrin	mg/kg	0.03					-	-	<0.03	<0.03		<0.03	-	<0.03		<0.03
	Endrin aldehyde	mg/kg	0.03					-	-	<0.03	<0.03		<0.03		<0.03	-	<0.03
	g-BHC (Lindane)	mg/kg	0.03				-	-	-	<0.03	<0.03		<0.03		<0.03		<0.03
	Heptachlor	mg/kg				20	-	-	-	<0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	rieplachiol	mg/ng															
	Heptachlor epoxide	mg/kg	0.03				-	-	-	<0.03 <0.03	<0.03 <0.03	-	<0.03	-	<0.03 <0.03	-	<0.03 <0.03

Table D1 Kellette	s Road Drain Wetland					SampleCode	EM0902848086	EM0902848088	EM0902969001	EM0902969002	EM0902969003	EM0902969004	EM0902969005	EM0902969006	EM0902969007	EM0902969008	EM0902969009
Melbourne Wate						Field_ID	TP07_4.0-4.1_PartB						TP03_1.0-1.1_PART A			TP04_4.0-4.1_PART A	
						LocCode	TP07	TP07	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04	TP05
		10.5	I.S.O.														
Chem_Group	ChemName	Units	EQL	EPA448 Fill	NEPM 1999 EIL	NEPM 1999 HIL E											
	Methoxychlor	mg/kg	0.03		-			_	-	<0.03	<0.03	_	<0.03	-	<0.03	-	<0.03
	Wethoxychiol	iiig/kg	0.05				-		_	<0.05	<0.03	-	<0.00		<0.05	-	<0.00
PAH/Phenols	2,4,5-trichlorophenol	mg/kg					-	-	-	<0.05	<0.05	-	<0.05	-	<0.05	-	<0.05
	2,4-dichlorophenol	mg/kg				_	· ·	-		<0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	2,4-dimethylphenol 2-chlorophenol	mg/kg mg/kg					-	-	-	<1 <0.03	<1 <0.03	-	<1 <0.03	-	<1 <0.03	-	<1 <0.03
	2-methylphenol	mg/kg					-	-	-	<1	<1	-	<1	-	<1	-	<1
	3-&4-methylphenol	mg/kg	1				-	-	-	<1	<1	-	<1	-	<1	-	<1
	Acenaphthene	mg/kg				40	-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Acenaphthylene Anthracene	mg/kg mg/kg				<u>40</u> 40	-	-		<0.5 <0.5	<0.5	-	<0.5	-	<0.5 <0.5	-	<0.5 <0.5
	Benz(a)anthracene	mg/kg				40				<0.5	<0.5	-	<0.5		<0.5		<0.5
	Benzo(a) pyrene	mg/kg		1		2	-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Benzo(b)&(k)fluoranthene	mg/kg	0.5			40	-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Benzo(g,h,i)perylene	mg/kg				40	-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
l	Chrysene Dibenz(a,h)anthracene	mg/kg mg/kg				<u>40</u> 40		-		<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5 <0.5
 	Fluoranthene	mg/kg				40				<0.5	<0.5		<0.5		<0.5		<0.5
	Fluorene	mg/kg				40	-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Indeno(1,2,3-c,d)pyrene	mg/kg				40	-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Naphthalene	mg/kg				40	-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Phenanthrene	mg/kg				<u>40</u> 17000	-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	Phenol Pyrene	mg/kg mg/kg			-	40				<1 <0.5	<1 <0.5	-	<1 <0.5	-	<1 <0.5	-	<1 <0.5
	1 yiene	iiig/kg	0.5			40	-	-	-	<0.5	<0.0	_	<0.5		<0.5		<0.5
PCB	PCBs (Sum of total)	mg/kg	0.1	2		<u>20</u>	-	-	-	<0.1	<0.1	-	<0.1	-	<0.1	-	<0.1
01/00																	
SVOC	2,4,6-trichlorophenol 2,4-dinitrophenol	mg/kg mg/kg					-	-	-	<0.05 <5	<0.05	-	<0.05 <5	-	<0.05	-	<0.05 <5
	2,6-dichlorophenol	mg/kg					-	-		<0.03	<5 <0.03	-	<0.03	-	<5 <0.03		<0.03
	2-nitrophenol	mg/kg					-	-	-	<1	<1	-	<1	-	<1	-	<1
	4,6-Dinitro-2-methylphenol	mg/kg					-	-	-	<5	<5	-	<5	-	<5	-	<5
	4-chloro-3-methylphenol	mg/kg					-	-	-	<0.03	<0.03	-	<0.03	-	<0.03	-	<0.03
	4-nitrophenol	mg/kg						-	-	<5	<5	-	<5	-	<5	-	<5
	Pentachlorophenol	mg/kg	0.2		-		-	-	-	<0.2	<0.2	-	<0.2	-	<0.2	-	<0.2
ТРН	TPH C 6 - C 9 Fraction	mg/kg	10	100			· .	-	-	<10	<10	-	<10	-	<10	-	<10
	TPH C10 - C14 Fraction	mg/kg					-	-	-	<50	<50	-	<50	-	<50	-	<50
	TPH C15 - C28 Fraction	mg/kg					-	-	-	<100	<100	-	<100	-	<100	-	<100
	TPH C29-C36 Fraction	mg/kg						-		<100 <50	<100		<100	-	<100		<100 <50
	TPH+C10 - C36 (Sum of total)	mg/kg	50	1000				-	-	<0U	<50	-	<50	-	<50	-	00>
VOC	1,1,1,2-tetrachloroethane	mg/kg	0.01				-	-	-	<0.01	<0.01	-	<0.01	-	<0.01	-	<0.01
	1,1,1-trichloroethane	mg/kg	0.01				-	-	-	<0.01	<0.01	-	<0.01	-	<0.01	-	<0.01
l	1,1,2,2-tetrachloroethane	mg/kg					· ·	-	-	<0.02	<0.02	-	<0.02	-	<0.02	-	<0.02
l	1,1,2-trichloroethane 1,1-dichloroethene	mg/kg mg/kg					-	-		<0.04 <0.01	<0.04 <0.01	-	<0.04 <0.01	-	<0.04 <0.01	-	<0.04 <0.01
	1,2,4-trichlorobenzene	mg/kg					-	-	-	<0.01	<0.01	-	<0.01	-	<0.01	-	<0.01
	1,2-dichlorobenzene	mg/kg					-	-	-	<0.01	<0.02	-	<0.02	-	<0.02	-	<0.02
	1,2-dichloroethane	mg/kg					-	-	-	<0.02	<0.02	-	<0.02	-	<0.02	-	<0.02
	1,4-dichlorobenzene	mg/kg	0.02				-	-	-	<0.02	<0.02	-	<0.02	-	<0.02	-	<0.02
	Carbon tetrachloride	mg/kg	0.01				-	-	-	<0.01	<0.01	-	<0.01	-	<0.01	-	<0.01
	Chlorobenzene Chloroform	mg/kg mg/kg								<0.02	<0.02 <0.02		<0.02	-	<0.02 <0.02	-	<0.02 <0.02
	cis-1,2-dichloroethene	mg/kg						-		<0.02	<0.02	-	<0.02	-	<0.02	-	<0.02
	Dichloromethane	mg/kg					-	-	-	<0.4	<0.4	-	<0.4	-	<0.4	-	<0.4
	Hexachlorobutadiene	mg/kg	0.02				-	-	-	<0.02	<0.02	-	<0.02	-	<0.02	-	<0.02
	Styrene	mg/kg					-	-	-	<0.5	<0.5	-	<0.5	-	<0.5	-	<0.5
	TCE Totrachlaraethana	mg/kg					-	-	-	<0.02	<0.02	-	<0.02	-	<0.02	-	<0.02
	Tetrachloroethene trans-1,2-dichloroethene	mg/kg mg/kg					-	-	-	<0.02	<0.02 <0.02	-	<0.02 <0.02	-	<0.02 <0.02	-	<0.02 <0.02
	Vinyl chloride	mg/kg						-		<0.02	<0.02	-	<0.02		<0.02	-	<0.02
	vinyi cilioliue	iiig/Kg	0.02				-	-	-	<0.0Z	<0.0Z	-	<0.0Z	-	<0.0Z	-	<0.0Z

	ts Road Drain Wetland					SampleCode	EM0902969010	EM0902969011	EM0902969012	EM0902969013	EM0902969014
Melbourne Wate	er					Field_ID	TP05_0.5-0.6_PART A	TP06_0.1-0.2_PART A		TP07_0.5-0.6_PART A	
						LocCode	TP05	TP06	TP06	TP07	TP07
0	Ob - make mark	11-16-	501								
Chem_Group	ChemName	Units	EQL	EPA448 Fill	NEPM 1999 EIL	NEPM 1999 HIL E					
	2,3,5,6-Tetrachlorophenol	mg/kg	0.03					< 0.03	-	< 0.03	-
	2.3.4.5 & 2.3.4.6-Tetrachlorophenol	mg/kg					-	<0.05	-	< 0.05	-
	4,6-Dinitro-o-cyclohexyl phenol	mg/kg	5				-	<5	-	<5	-
	Chlorinated hydrocarbons	mg/kg	0.01	1			-	<0.01	-	<0.01	-
	Dinoseb	mg/kg	5				-	<5	-	<5	-
	Heptachlor (including its epoxide)	mg/kg					-	<0.06	-	<0.06	-
	Monocylic aromatic hydrocarbons	mg/kg		7			-	<0.2	-	<0.2	-
	Organochlorine pesticides	mg/kg	0.03	1			-	<0.03	-	<0.03	-
	Other chlorinated hydrocarbons	mg/kg						<0.01	-	<0.01	-
	Other organochlorine pesticides	mg/kg	0.03				-	<0.03	-	<0.03	-
	PAH Total (NSW, 1999)	mg/kg	0.1				-	<6.5	-	<6.5	-
	pH (F) pH (Fox)	mg/kg mg/kg	0.1				-	-	-		-
	Phenols (non-halogenated)	mg/kg	1	60			-	<1	-	<1	
	Phenols(halogenated)	mg/kg	0.03	1			-	<0.03	-	<0.03	
	Polycylic aromatic hydrocarbons	mg/kg	0.5	20			-	<0.5	-	<0.5	-
	Reaction Rate	mg/kg	1				-	-	-	-	-
	Scheduled Chemicals (NSW, 1999)	mg/kg					-	<0.67	-	<0.67	-
	Trihalomethanes (ADW 2004)	mg/kg					-	<0.02	-	<0.02	-
BTEX	Benzene	mg/kg	0.2	1			-	<0.2	-	<0.2	-
	Ethylbenzene	mg/kg					-	<0.5	-	<0.5	-
	Toluene	mg/kg					-	<0.5	-	<0.5	-
	Xylene (m & p)	mg/kg					-	<0.5	-	<0.5	-
	Xylene (o)	mg/kg	0.5				-	<0.5	-	<0.5	-
	Xylene Total	mg/kg					-	<1	-	<1	-
Inorganica	Cyanida Tatal	malka	1	50		1000	-	1	-	-1	-
Inorganics	Cyanide Total Fluoride	mg/kg mg/kg	1 40	50 450		1000		70	-	<1 <40	
	Moisture	111g/kg %	40	430			12.3	13.7	16.2	30.2	18.8
	Molature	70					12.5	10.7	10.2	50.2	10.0
Lead	Lead	mg/kg	5	300	600	600	9	20	9	7	8
Metals	Arsenic	mg/kg	5	20	20	200	<5	<5	<5	<5	<5
	Cadmium	mg/kg	1	3	3	40	<1	<1	<1	<1	<1
	Chromium (hexavalent)	mg/kg	0.5	1	1	200	<0.5	<0.5	<0.5	<0.5	<0.5
	Copper	mg/kg	5	100	100	<u>2000</u>	6	10	5	<5	8
	Mercury	mg/kg	0.1	1	1	<u>30</u>	<0.1	<0.1	<0.1	<0.1	<0.1
	Molybdenum	mg/kg	2	40			<2	<2	<2	<2	<2
	Nickel	mg/kg	2	60	60	<u>600</u>	3	5	3	3	8
	Selenium	mg/kg	5	10			<5	<5	<5	<5	<5
	Silver	mg/kg	2	10 50			<2	<2 <5	<2	<2	<2
	Tin Zinc	mg/kg mg/kg	5 5	200	200	14000	- <5	22	- <5	<5 <5	- 16
		mg/kg	5	200	200	1-1000	~~		~~		10
OCP	4,4-DDE	mg/kg	0.05				-	<0.05	-	<0.05	-
	a-BHC	mg/kg	0.03				-	<0.03	-	<0.03	-
	Aldrin	mg/kg	0.03				-	<0.03	-	<0.03	-
	Aldrin + Dieldrin	mg/kg	0.03			20	-	< 0.03	-	< 0.03	-
	b-BHC	mg/kg	0.03				-	<0.03	-	<0.03	-
	chlordane	mg/kg				<u>100</u>	-	<0.03	-	<0.03	-
	Chlordane (cis)	mg/kg				<u>100</u>	-	<0.03	-	<0.03	-
	Chlordane (trans)		0.03				-	<0.03	-	<0.03	-
	d-BHC	mg/kg					-	<0.03	-	<0.03	-
	DDD	mg/kg					-	<0.05	-	<0.05	-
	DDT	mg/kg					-	<0.05	-	<0.05	-
	DDT+DDE+DDD	mg/kg				<u>400</u>	-	<0.05	-	<0.05	-
	Dieldrin Endoculfon I	mg/kg					-	< 0.03	-	<0.03	-
	Endosulfan I	mg/kg					-	< 0.03	-	<0.03	-
	Endosulfan II Endosulfan sulphato	mg/kg					-	<0.03	-	<0.03	-
	Endosulfan sulphate	mg/kg mg/kg					-	<0.03 <0.03	-	<0.03 <0.03	-
	Endrin Endrin aldehyde	mg/kg					-	<0.03	-	<0.03	-
	g-BHC (Lindane)	mg/kg					-	<0.03	-	<0.03	-
	Heptachlor	mg/kg				20	-	<0.03		<0.03	-
	Heptachlor epoxide	mg/kg				<u></u>	-	<0.03	-	<0.03	-
	Hexachlorobenzene		0.03				-	<0.03	-	<0.03	-

lelbourne Wate	ts Road Drain Wetland					SampleCode	EM0902969010	EM0902969011	EM0902969012	EM0902969013	EM0902969014
leibourne vvate	er					Field_ID LocCode	TP05_0.5-0.6_PART A TP05	TP06_0.1-0.2_PART A TP06	TP06_1.0-1.1_PARTA	TP07_0.5-0.6_PART A TP07	TP07_2.0-2.1_PART TP07
						LOCCOUE	11 05	11 00	11.00	11 07	11 07
nem_Group	ChemName	Units	EQL	EPA448 Fill	NEPM 1999 EIL	NEPM 1999 HIL E					
			0.00					0.00		0.00	
	Methoxychlor	mg/kg	0.03				-	<0.03	-	<0.03	-
AH/Phenols	2,4,5-trichlorophenol	mg/kg	0.05					<0.05	-	<0.05	
AII/FIIEIIUIS	2,4-dichlorophenol	mg/kg						<0.03	-	<0.03	-
	2,4-dimethylphenol	mg/kg						<1	-	<1	-
	2-chlorophenol	mg/kg					-	<0.03	-	<0.03	-
	2-methylphenol	mg/kg	1				-	<1	-	<1	-
	3-&4-methylphenol	mg/kg	1				-	<1	-	<1	-
	Acenaphthene	mg/kg				<u>40</u>	-	<0.5	-	<0.5	-
	Acenaphthylene	mg/kg				<u>40</u>	-	<0.5	-	<0.5	-
	Anthracene	mg/kg				40	-	<0.5	-	<0.5	-
	Benz(a)anthracene	mg/kg		4		40	-	<0.5	-	<0.5	-
	Benzo(a) pyrene Benzo(b)&(k)fluoranthene	mg/kg mg/kg	0.5	1		<u>2</u> 40		<0.5 <0.5	-	<0.5 <0.5	
	Benzo(g,h,i)perylene	mg/kg	0.5			40	-	<0.5	-	<0.5	-
	Chrysene	mg/kg	0.5			40		<0.5	-	<0.5	-
	Dibenz(a,h)anthracene	mg/kg	0.5			40	-	<0.5	-	<0.5	-
	Fluoranthene	mg/kg	0.5			40	-	<0.5	-	<0.5	-
	Fluorene	mg/kg	0.5			40	-	<0.5	-	<0.5	-
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5			40	-	<0.5	-	<0.5	-
	Naphthalene	mg/kg	0.5			<u>40</u>	-	<0.5	-	<0.5	-
	Phenanthrene	mg/kg				<u>40</u>	-	<0.5	-	<0.5	-
	Phenol	mg/kg	1			<u>17000</u>	-	<1	-	<1	-
	Pyrene	mg/kg	0.5			<u>40</u>	-	<0.5	-	<0.5	-
CD			0.1	•		20		.0.1		.0.1	
СВ	PCBs (Sum of total)	mg/kg	0.1	2		<u>20</u>		<0.1	-	<0.1	-
VOC	2,4,6-trichlorophenol	mg/kg	0.05					<0.05		<0.05	-
	2,4-dinitrophenol	mg/kg					-	<5	-	<5	-
	2,6-dichlorophenol	mg/kg	0.03				-	<0.03	-	<0.03	-
	2-nitrophenol	mg/kg					-	<1	-	<1	-
	4,6-Dinitro-2-methylphenol	mg/kg	5				-	<5	-	<5	-
	4-chloro-3-methylphenol	mg/kg					-	<0.03	-	<0.03	-
	4-nitrophenol	mg/kg	5				-	<5	-	<5	-
	Pentachlorophenol	mg/kg	0.2				-	<0.2	-	<0.2	-
PH	TRULC C. C.O. Frontian		10	100			_	-10	-	<10	
PA	TPH C 6 - C 9 Fraction TPH C10 - C14 Fraction	mg/kg mg/kg		100			-	<10 <50	-	<50	-
	TPH C15 - C28 Fraction	mg/kg					-	<100	-	<100	-
	TPH C29-C36 Fraction	mg/kg	100				-	<100	-	<100	-
	TPH+C10 - C36 (Sum of total)	mg/kg		1000			-	<50	-	<50	-
OC	1,1,1,2-tetrachloroethane	mg/kg	0.01				-	<0.01	-	<0.01	-
	1,1,1-trichloroethane	mg/kg	0.01				-	<0.01	-	<0.01	-
	1,1,2,2-tetrachloroethane	mg/kg	0.02				-	<0.02	-	<0.02	-
	1,1,2-trichloroethane	mg/kg	0.04				-	<0.04	-	<0.04	-
	1,1-dichloroethene	mg/kg	0.01				-	<0.01 <0.01	-	<0.01 <0.01	-
	1,2,4-trichlorobenzene 1,2-dichlorobenzene	mg/kg mg/kg	0.01					<0.01	-	<0.01	-
	1,2-dichloroethane	mg/kg						<0.02		<0.02	-
	1,4-dichlorobenzene	mg/kg					-	<0.02	-	<0.02	-
	Carbon tetrachloride	mg/kg					-	<0.01	-	<0.01	-
	Chlorobenzene	mg/kg					-	<0.02	-	<0.02	-
	Chloroform	mg/kg					-	<0.02	-	<0.02	-
	cis-1,2-dichloroethene	mg/kg					-	<0.01	-	<0.01	-
	Dichloromethane	mg/kg					-	<0.4	-	<0.4	-
	Hexachlorobutadiene	mg/kg					-	<0.02	-	<0.02	-
	Styrene	mg/kg					-	<0.5	-	<0.5	-
	TCE	mg/kg					-	<0.02	-	<0.02	-
	Tetrachloroethene	mg/kg					-	<0.02	-	<0.02	-
	trans-1,2-dichloroethene	mg/kg	0.02				-	<0.02	-	<0.02	-

Table D2 Kelletts Road Drain Wetland SPOCAS	S Testina	Field ID	TP01_0.5-0.6_PartB	TP01_3.0-3.1_PartB	TP02 0.5-0.6 PartB	TP02_2.0-2.1_PartB	TP03_0.5-0.6_PartB	TP03_2.0-2.1_PartB	TP04 0.5-0.6 PartB	TP04 2.0-2.1 PartB
Melbourne Water	5	LocCode	TP01	TP01	TP02	TP02	TP03	TP03	TP04	TP04
		Sampled_Date-Time	1/04/2009	1/04/2009	1/04/2009	1/04/2009	1/04/2009	1/04/2009	1/04/2009	1/04/2009
ChemName	Units	EQL								
pH Measurements										
pH KCl	pH Unit	0.1	5.9	5.8	5.7	5	5.9	5.6	6	5.8
pH OX	pH Unit	0.1	5	6.9	4.6	5.8	4.6	6.8	4.9	6.9
Acidity Trails										
Titratable Actual Acidity	mole H+/t	2	18	11	42	24	24	13	26	10
Titratable Peroxide Acidity	mole H+/t	2	9	<2	19	23	10	<2	11	<2
Titratable Sulfidic Acidity	mole H+/t	2	<2	<2	<2	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity	%S	0.02	0.03	<0.02	0.07	0.04	0.04	0.02	0.04	<0.02
sulfidic - Titratable Peroxide Acidity	%S	0.02	<0.02	<0.02	0.03	0.04	<0.02	<0.02	<0.02	<0.02
sulfidic - Titratable Sulfidic Acidity	%S	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Sulfur Trail										
KCI Extractable Sulfur	%	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Sulfur in Peroxide	%	0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02
Peroxide Oxidisable Sulfur	%	0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02
acidity - Peroxide Oxidisable Sulfur	mole H+/t	10	<10	<10	<10	<10	14	<10	<10	<10
Calcium Values										
KCI Extractable Calcium	%	0.02	0.05	0.06	0.07	0.07	0.05	0.05	0.05	0.06
Calcium in Peroxide	%	0.02	0.07	0.07	0.1	0.1	0.07	0.07	0.06	0.07
Acid Reacted Calcium	%	0.02	<0.02	<0.02	0.03	0.02	<0.02	0.02	<0.02	<0.02
acidity - Acid Reacted Calcium	mole H+/t	10	<10	<10	14	12	<10	10	<10	<10
sulfidic - Acid Reacted Calcium	%	0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Magnesium Values										
KCI Extractable Magnesium	%	0.02	0.08	0.12	0.07	0.11	0.08	0.11	0.07	0.14
Magnesium in Peroxide	%	0.02	0.1	0.14	0.1	0.14	0.1	0.14	0.08	0.16
Acid Reacted Magnesium	%	0.02	<0.02	<0.02	0.03	0.03	0.02	0.03	<0.02	0.03
acidity - Acid Reacted Magnesium	mole H+/t	10	16	16	24	26	18	27	10	23
sulfidic - Acid Reacted Magnesium	%S	0.02	0.02	0.02	0.04	0.04	0.03	0.04	<0.02	0.04
Excess Acid Neutralising Capacity										
Excess Acid Neutralising Capacity	%S	0.02	-	0.05	-	-	-	<0.02	-	0.12
acidity - Excess Acid Neutralising Capacity	mole H+/t	10	-	<10	-	-	-	<10	-	25
sulfidic - Excess Acid Neutralising Capacity	%S	0.02	-	<0.02	-	-	-	<0.02	-	0.04
Acid Base Accounting										
ANC Fineness Factor	-	0.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Liming Rate	kg CaCO3/t	1	1	<1	3	2	3	<1	2	<1
Net Acidity (acidity units)	mole H+/t	10	18	11	42	24	38	13	26	10
Net Acidity (sulfur units)	%S	0.02	0.03	<0.02	0.07	0.04	0.06	0.02	0.04	<0.02

Table D2 Kelletts Road Drain Wetland SPOCAS	S Testina	Field ID	TP05 0.5-0.6 PartB	TP05 4.0-4.1 PartB	TP06 0.5-0.6 PartB	TP06 3.0-3.1 PartB	TP06 4.0-4.1 PartB	TP07 0.5-0.6 PartB	TP07 2.0-2.1 PartB	TP07 5.0-5.1 PartB
Melbourne Water	5	LocCode	TP05	TP05	TP06	TP06	TP06	TP07	TP07	TP07
		Sampled_Date-Time	1/04/2009	1/04/2009	1/04/2009	1/04/2009	1/04/2009	1/04/2009	1/04/2009	1/04/2009
ChemName	Units	EQL								
pH Measurements										
pH KCl	pH Unit	0.1	5.9	5.6	5.8	5.6	6.3	5.3	5.9	5.8
pH OX	pH Unit	0.1	4.9	6.3	4.8	6.6	6.4	4	6.7	6.5
Acidity Trails										
Titratable Actual Acidity	mole H+/t	2	29	13	30	13	6	20	20	8
Titratable Peroxide Acidity	mole H+/t	2	11	10	9	<2	5	9	<2	4
Titratable Sulfidic Acidity	mole H+/t	2	<2	<2	<2	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity	%S	0.02	0.05	0.02	0.05	0.02	<0.02	0.03	0.03	<0.02
sulfidic - Titratable Peroxide Acidity	%S	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
sulfidic - Titratable Sulfidic Acidity	%S	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Sulfur Trail										
KCI Extractable Sulfur	%	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02
Sulfur in Peroxide	%	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Peroxide Oxidisable Sulfur	%	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Peroxide Oxidisable Sulfur	mole H+/t	10	<10	<10	<10	<10	<10	<10	<10	<10
Calcium Values										
KCI Extractable Calcium	%	0.02	0.05	0.05	0.07	0.05	0.03	0.06	0.04	0.03
Calcium in Peroxide	%	0.02	0.07	0.06	0.09	0.06	0.04	0.07	0.05	0.04
Acid Reacted Calcium	%	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Acid Reacted Calcium	mole H+/t	10	10	<10	<10	<10	<10	<10	<10	<10
sulfidic - Acid Reacted Calcium	%	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Magnesium Values										
KCI Extractable Magnesium	%	0.02	0.05	0.09	0.06	0.09	0.05	0.06	0.09	0.06
Magnesium in Peroxide	%	0.02	0.08	0.1	0.08	0.11	0.06	0.07	0.11	0.06
Acid Reacted Magnesium	%	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Acid Reacted Magnesium		10	18	14	16	15	<10	<10	15	<10
sulfidic - Acid Reacted Magnesium	%S	0.02	0.03	0.02	0.02	0.02	<0.02	<0.02	0.02	<0.02
Excess Acid Neutralising Capacity										
Excess Acid Neutralising Capacity	%S	0.02	-	-	-	<0.02	-	-	<0.02	-
acidity - Excess Acid Neutralising Capacity	mole H+/t	10	-	-	-	<10	-	-	<10	-
sulfidic - Excess Acid Neutralising Capacity	%S	0.02	-	-	-	<0.02	-	-	<0.02	-
Acid Base Accounting										
ANC Fineness Factor	-	0.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Liming Rate	kg CaCO3/t	1	2	<1	2	<1	<1	2	2	<1
Net Acidity (acidity units)		10	29	13	30	13	<10	20	20	<10
Net Acidity (sulfur units)	%S	0.02	0.05	0.02	0.05	0.02	<0.02	0.03	0.03	<0.02

	(SOIL)		Sampled_Date-Time	TP01_3.0-3.1_PART A 1/04/2009	1/04/2009	
Chem_Group	ChemName	Units	EQL			
	2,3,5,6-Tetrachlorophenol	mg/kg		<0.03	< 0.03	0
	2.3.4.5 & 2.3.4.6-Tetrachlorophenol 4,6-Dinitro-o-cyclohexyl phenol	mg/kg mg/kg		<0.05 <5.0	<0.05 <5.0	0
	Chlorinated hydrocarbons	mg/kg		<0.01	<0.01	0
	Dinoseb Monocylic aromatic hydrocarbons	mg/kg mg/kg		<5.0 <0.2	<5.0 <0.2	0
	Organochlorine pesticides	mg/kg		<0.03 <0.01	<0.03 <0.01	0
	Other chlorinated hydrocarbons Other organochlorine pesticides	mg/kg mg/kg		<0.01	<0.01	0
	Phenols (non-halogenated)	mg/kg		<1.0	<1.0	0
	Phenols(halogenated) Polycylic aromatic hydrocarbons	mg/kg mg/kg		<0.03 <0.5	<0.03 <0.5	0
BTEX	Benzene Ethylbenzene	mg/kg mg/kg		<0.2 <0.5	<0.2 <0.5	0
	Toluene	mg/kg	0.5	<0.5	<0.5	0
	Xylene (m & p) Xylene (o)	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0
	Xyione (0)	iiig/kg	0.0	40.0	40.0	Ŭ
norganics	Cyanide Total Fluoride	mg/kg mg/kg		<1.0 90.0	<1.0 110.0	0 20
	Moisture	ті <u>у</u> /ку %	1	17.7	18.5	4
and	Lood	~~~//~~	F	10.0	0.0	11
ead	Lead	mg/kg	5	10.0	9.0	11
/letals	Arsenic	mg/kg		<5.0	<5.0	0
	Cadmium Chromium (hexavalent)	mg/kg mg/kg		<1.0 <0.5	<1.0 <0.5	0
	Copper	mg/kg	5	9.0	10.0	11
	Mercury	mg/kg	0.1	<0.1	<0.1	0
	Molybdenum Nickel	mg/kg mg/kg		<2.0 8.0	<2.0 8.0	0
	Selenium	mg/kg	5	<5.0	<5.0	0
	Silver Tin	mg/kg mg/kg		<2.0 <5.0	<2.0 <5.0	0
	Zinc	mg/kg		11.0	10.0	10
)CP	4,4-DDE	mg/kg	0.05	<0.05	<0.05	0
	4,4-DDE a-BHC	mg/kg mg/kg		<0.05 <0.03	<0.05	0
	Aldrin	mg/kg	0.03	<0.03	< 0.03	0
	Aldrin + Dieldrin b-BHC	mg/kg mg/kg		<0.03 <0.03	<0.03 <0.03	0
	chlordane	mg/kg	0.03	<0.03	<0.03	0
	Chlordane (cis) Chlordane (trans)	mg/kg mg/kg		<0.03 <0.03	<0.03 <0.03	0
	d-BHC	mg/kg		<0.03	<0.03	0
	DDD DDT	mg/kg		<0.05 <0.05	<0.05 <0.05	0
	DDT+DDE+DDD	mg/kg mg/kg		<0.05	<0.05	0
	Dieldrin	mg/kg	0.03	<0.03	<0.03	0
	Endosulfan I Endosulfan II	mg/kg mg/kg		<0.03 <0.03	<0.03 <0.03	0
	Endosulfan sulphate	mg/kg	0.03	<0.03	<0.03	0
	Endrin Endrin aldehyde	mg/kg mg/kg		<0.03 <0.03	<0.03 <0.03	0
	g-BHC (Lindane)	mg/kg		<0.03	< 0.03	0
	Heptachlor Heptachlor epoxide	mg/kg mg/kg		<0.03 <0.03	<0.03 <0.03	0
	Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg	0.03	<0.03 <0.03 <0.03	<0.03 <0.03 <0.03	0
PAH/Phenols	2,4,5-trichlorophenol	mg/kg		<0.05	<0.05	0
	2,4-dichlorophenol	mg/kg	0.03	<0.03	<0.03	0
	2,4-dimethylphenol 2-chlorophenol	mg/kg mg/kg		<1.0 <0.03	<1.0 <0.03	0
	2-methylphenol	mg/kg		<1.0	<1.0	0
	3-&4-methylphenol	mg/kg		<1.0	<1.0	0
	Acenaphthene Acenaphthylene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0
	Anthracene	mg/kg		<0.5	<0.5	0
	Benz(a)anthracene Benzo(a) pyrene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0
	Benzo(b)&(k)fluoranthene	mg/kg	0.5	<0.5	<0.5	0
	Benzo(g,h,i)perylene Chrysene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0
	Dibenz(a,h)anthracene	mg/kg		<0.5 <0.5	<0.5	0
	Fluoranthene	mg/kg	0.5	<0.5	<0.5	0
	Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg		<0.5 <0.5	<0.5 <0.5	0
	Naphthalene	mg/kg	0.5	<0.5	<0.5	0
	Phenanthrene Phenol	mg/kg mg/kg		<0.5 <1.0	<0.5 <1.0	0
	Pyrene	mg/kg		<0.5	<0.5	0
СВ	PCBs (Sum of total)	mg/kg	0.1	<0.1	<0.1	0
SVOC	2,4,6-trichlorophenol 2,4-dinitrophenol	mg/kg mg/kg		<0.05	<0.05	0
	2,4-dinitrophenol 2,6-dichlorophenol	mg/kg mg/kg		<5.0 <0.03	<5.0 <0.03	0
	2-nitrophenol	mg/kg	1	<1.0	<1.0	0
	4,6-Dinitro-2-methylphenol 4-chloro-3-methylphenol	mg/kg mg/kg		<5.0 <0.03	<5.0 <0.03	0
	4-nitrophenol	mg/kg	5	<5.0	<5.0	0
	Pentachlorophenol	mg/kg	0.2	<0.2	<0.2	0
PH	TPH C 6 - C 9 Fraction	mg/kg		<10.0	<10.0	0
	TPH C10 - C14 Fraction TPH C15 - C28 Fraction	mg/kg mg/kg		<50.0 <100.0	<50.0 <100.0	0
	TPH C29-C36 Fraction	mg/kg	100	<100.0	<100.0	0
	TPH+C10 - C36 (Sum of total)	mg/kg	50	<50.0	<50.0	0
OC	1,1,1,2-tetrachloroethane	mg/kg		<0.01	<0.01	0
	1,1,1-trichloroethane	mg/kg		<0.01	<0.01	0
	1,1,2,2-tetrachloroethane 1,1,2-trichloroethane	mg/kg mg/kg		<0.02 <0.04	<0.02 <0.04	0
	1,1-dichloroethene	mg/kg	0.01	<0.01	<0.01	0
	1,2,4-trichlorobenzene 1,2-dichlorobenzene	mg/kg mg/kg		<0.01 <0.02	<0.01 <0.02	0
	1,2-dichloroethane	mg/kg	0.02	<0.02	<0.02	0
	1,4-dichlorobenzene Carbon tetrachloride	mg/kg mg/kg		<0.02 <0.01	<0.02 <0.01	0
	Chlorobenzene	mg/kg		<0.01	<0.01	0
	Chloroform	mg/kg	0.02	<0.02	<0.02	0
	cis-1,2-dichloroethene Dichloromethane	mg/kg mg/kg		<0.01 <0.4	<0.01 <0.4	0
	Hexachlorobutadiene	mg/kg	0.02	<0.02	<0.02	0
	Styrene TCE	mg/kg		<0.5 <0.02	<0.5 <0.02	0
	Tetrachloroethene	mg/kg mg/kg		<0.02	<0.02	0
	trans-1,2-dichloroethene	0 0	0.02	<0.02	<0.02	0

 BOLD
 Indicates RPD Exceedance

 "RPDs have only been considered where a concentration is greater than 10 times the EQL.

 **High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 30 (5-10 x EQL); 30 (10-30 x EQL); 30 (> 30 x EQL))

 ***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories.

 Any methods in the row header relate to those used in the primary laboratory

3:32 PM8/05/2009

Chemistry QA Checker1 EPA448.xls

180 Lonsdale Street Melbourne, Victoria 3000 T: (03) 8687 8000 F: (03) 8687 8111 E: melmail@ghd.com.au

© GHD 2009

This document is and shall remain the property of GHD. The document may only be used for the purposes for which it was commissioned and in accordance with the Consultancy Agreement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Rev No.	Author	Reviewer		Approved for Issue			
		Name	Signature	Name	Signature	Date	
0	K. Church	S. Collison	Samp	S. Collison	Santo	14/5/09	

180 Lonsdale Street Melbourne, Victoria 3000 T: (03) 8687 8000 F: (03) 8687 8111 E: melmail@ghd.com.au

© GHD and Melbourne Water Corporation 2009

This document is and shall remain the joint property of GHD and Melbourne Water Corporation. The document may only be used for the purpose for which it was commissioned and in accordance with the Consultancy Agreement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Document Status

Rev No.	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
0	J Bernardi	A Roberts	Ol	K Keam	Ken Ken	4/06/09